
2026/01/16 08:05 (0 seconds ago) 1/7 fx

Orx Learning - https://orx-project.org/wiki/

本页由 胡四娃 翻译自官方的教程

特效教程(FX)

综述

参看前面的教程基础, 对象创建, 时钟 , 帧层次结构， 动画， 视口与摄像机，和 声音与音乐 。
这篇教程介绍了什么是特效以及如何创建它们
特效是将曲线及其组合而成的一组数据（正弦线、三角型边、矩形或者线性），应用在不同类型的参数中。
如：缩放、旋转、位置、速度、颜色等。

特效在配置文件中设置，仅仅只需要一行代码就可以在对象上使用这些特效。
可以有最多8条任意类型的曲线组合在一起形成一个特效。
在同一时间，可以有最多4个特效应用于同一个对象上面。

特效可以使用绝对值或者相对值，这取决于配置文件中Absolute标签。
控制曲线的周期、相位、和振幅都是允许的。
对于位置和速度特效来说，输出值可以使用对象的方向 和/或 缩放值，以相对方式应用于对象目前的状
态。

这也就允许我们创造极其拉风的视觉特效。

除非特效已经缓存在内存中，否则特效参数全部在配置文件中进行调整，并且使用退格键来即时重载。 (cf.
通过 KeepInCache 属性来实现内存的缓存).
比如说：你不能调整正在运行的循环特效，因为他已经在默认的配置文件中定义好了。在这个测试程序运
行的时候，所有其它的特效能够被更新。

通常说来，随机值的使用可以给特效带来更多的变化。
比如, 晃动方式的缩放（the wobble scale), 带颜色的闪光(the flash color) 和 攻击式的移动(the “attack”
move) 等特效就使用了少量的随机值.

就像显示事件一样，我们也可以注册特效的开始播放和停止的事件。 因为循环时间是永远不会停下来的，
所以对应的停止事件(orxFX_EVENT_STOP)永远不会发生. 我们也会简单的介绍一下如何一些个性数据
（仅仅包含一个布尔值的结构）添加到orxOBJECT中。1)

在事件的回调函数中，我们通过它，在特效开始的时候为对象加锁，在结束的时候解锁。
我们使用锁是为了让soldier(士兵)在同一时刻只有一个特效在发挥作用。
把这些东西写在这里，仅仅具有教育意义。2)

详细内容

通常，我们先载入配置文件，创建一个时钟，然后注册更新函数，最后，创建我们的士兵和盒子对象。请
从之前的教程中获取更多信息。 .

然后，我们注册输入和特效事件

orxEvent_AddHandler(orxEVENT_TYPE_FX, EventHandler);
orxEvent_AddHandler(orxEVENT_TYPE_INPUT, EventHandler);

大家可以看到，在这两个事件中，我们使用了同一个回调函数（EventHandler）.

https://orx-project.org/wiki/en/orx/tutorials/fx
https://orx-project.org/wiki/cn/orx/tutorials/main
https://orx-project.org/wiki/cn/orx/tutorials/object
https://orx-project.org/wiki/cn/orx/tutorials/clock
https://orx-project.org/wiki/cn/orx/tutorials/frame
https://orx-project.org/wiki/cn/orx/tutorials/anim
https://orx-project.org/wiki/cn/orx/tutorials/viewport
https://orx-project.org/wiki/cn/orx/tutorials/sound
https://orx-project.org/wiki/cn/orx/tutorials/main#basic

Last update: 2025/09/30 17:26 (4 months ago) cn:orx:tutorials:fx https://orx-project.org/wiki/cn/orx/tutorials/fx?rev=1285222695

https://orx-project.org/wiki/ Printed on 2026/01/16 08:05 (0 seconds ago)

现在我们迅速的扫一眼自己的“对象”数据结构。

typedef struct MyObject
{
 orxBOOL bLock;
} MyObject;

接下来，看看如何用 orxObject_SetUserData()将它绑定到soldier上

MyObject *pstMyObject;

pstMyObject = orxMemory_Allocate(sizeof(MyObject), orxMEMORY_TYPE_MAIN);
pstMyObject->bLock = orxFALSE;

orxObject_SetUserData(pstSoldier, pstMyObject);

现在看看如何在Update函数中使用特效

orxSTRING zSelectedFX;

if(orxInput_IsActive("SelectWobble"))
{
 zSelectedFX = "WobbleFX";
}
else if(orxInput_IsActive("SelectCircle"))
{
 zSelectedFX = "CircleFX";
}

[...]

// Soldier not locked?
if(!((MyObject *)orxObject_GetUserData(pstSoldier))->bLock)
{
 if(orxInput_IsActive("ApplyFX") && orxInput_HasNewStatus("ApplyFX"))
 {
 orxObject_AddFX(pstSoldier, zSelectedFX);
 }
}

可以看到，我们通过orxObject_GetUserData()这个函数得到了我们想要的数据，向solder里添加特效的方
法跟添加声音的方法如出一辙，用的都是这个函数orxObject_AddFX()。

接下来，看看EventHandler这个函数

首先是输入方面，这里只展示了每次输入时哪个按键被使用了。

if(_pstEvent->eType == orxEVENT_TYPE_INPUT)
{
 if(_pstEvent->eID == orxINPUT_EVENT_ON)
 {

2026/01/16 08:05 (0 seconds ago) 3/7 fx

Orx Learning - https://orx-project.org/wiki/

 orxINPUT_EVENT_PAYLOAD *pstPayload;

 pstPayload = (orxINPUT_EVENT_PAYLOAD *)_pstEvent->pstPayload;

 if(pstPayload->aeType[1] != orxINPUT_TYPE_NONE)
 {
 orxLOG("[%s] triggered by '%s' + '%s'.", pstPayload->zInputName,
orxInput_GetBindingName(pstPayload->aeType[0], pstPayload->aeID[0]),
orxInput_GetBindingName(pstPayload->aeType[1], pstPayload->aeID[1]));
 }
 else
 {
 orxLOG("[%s] triggered by '%s'.", pstPayload->zInputName,
orxInput_GetBindingName(pstPayload->aeType[0], pstPayload->aeID[0]));
 }
 }
}

正如你所见，我们通过按下的是一个单键还是一个组合键来判断展示不同的信息。

我们仅使用了两个首次输入点，因为我们知道，我们的配置文件中没有超过两个的组合键。尽管orx支持
最多四个组合键来做为一个单键。

orxInput_GetBindingName() 函数给了我们一个输入的文字显示。

注意：这些名称在配置文件中也绑定到了对应的按键上面。

现在来看下如何处理这个事件

if(_pstEvent->eType == orxEVENT_TYPE_FX)
{
 orxFX_EVENT_PAYLOAD *pstPayload;
 orxOBJECT *pstObject;

 pstPayload = _pstEvent->pstPayload;
 pstObject = orxOBJECT(_pstEvent->hRecipient);

 switch(_pstEvent->eID)
 {
 case orxFX_EVENT_START:
 orxLOG("FX <%s>@<%s> has started!", pstPayload->zFXName,
orxObject_GetName(pstObject));

 if(pstObject == pstSoldier)
 {
 // Locks it
 ((MyObject *)orxObject_GetUserData(pstObject))->bLock = orxTRUE;
 }
 break;

 case orxSOUND_EVENT_STOP:
 orxLOG("FX <%s>@<%s> has stoped!", pstPayload->zFXName,

Last update: 2025/09/30 17:26 (4 months ago) cn:orx:tutorials:fx https://orx-project.org/wiki/cn/orx/tutorials/fx?rev=1285222695

https://orx-project.org/wiki/ Printed on 2026/01/16 08:05 (0 seconds ago)

orxObject_GetName(pstObject));

 if(pstObject == pstSoldier)
 {
 // Unlocks it
 ((MyObject *)orxObject_GetUserData(pstObject))->bLock = orxFALSE;
 }
 break;
 }
}

在soldier上的动画开始的时候，我们用自己的数据结构来锁定它，相应的，停止的时候解锁。

看完了代码部分，我们再去看看配置文件。

首先看个简单的特效 ：盒子上旋转的特效。

[RotateLoopFX]
SlotList = Rotate
Loop = true

[Rotate]
Type = rotation
StartTime = 0.0
EndTime = 2.0
Curve = sine
Pow = 2.0
StartValue = 0
EndValue = 360

[Box]
FXList = RotateLoopFX

看到了吧，特效是在它创建之初直接应用在盒对象上面的，而不是在代码中。

RotateLoopFX包含仅包含一个时间段（Rotate）并且一直循环（attribute Loop）

然后定义Rotates时间段。时间的单位都是秒，角度的单位都是度。

定义这个旋转动画的时候，我们使用了一个正弦曲线，让他每两秒旋转360度。

下面看下我们的摇摆特效。

[WobbleFX]
SlotList = Wobble

[Wobble]
Type = scale
StartTime = 0.0
EndTime = 1.0
Period = 0.2
Curve = sine

2026/01/16 08:05 (0 seconds ago) 5/7 fx

Orx Learning - https://orx-project.org/wiki/

Amplification = 0.0
StartValue = (1.0, 1.0, 1.0)
EndValue = (2.0, 2.0, 1.0) ~ (6.0, 6.0, 1.0)

我们修改了scale属性，并赋予它一个StartValue（开始值）和EndValue（结束值）。
他们都是用向量来表示的，如果不想使用任何各向异性的值（译者注：专业名词 anisotropic(各向异性)
去知道确切意思）的话，也可是使用float类型来表示。
虽然看起来我们正在使用一个 isotropic(各向同性）3)的值，这个EndValue也不过是一个随机值。

也就是说，它的X和Y部分可能是完全统统的随机值！

除此之外，我们使用了一个简单的周期为0.2 秒的正弦曲线，它将会播放1秒钟。

看到了吧，我们将Amplification（增幅） 的值设为0，这就是说，随着时间的推进，曲线的振幅会逐渐变
低。 注意：默认的Amplification是1，表示不随时间变化，保持稳定，当值大于1时，振幅就会加大；当
值小于1时，振幅就会减少。

看看圆是如何运动的。

[CircleFX]
SlotList = CircleX#CircleY
KeepInCache = true

[CircleX]
Type = position
StartTime = 0.0
EndTime = 1.0
Curve = sine
StartValue = (0.0, 0.0, 0.0)
EndValue = (-50.0, 0.0, 0.0)
UseOrientation = true
UseScale = true

[CircleY@CircleX]
Phase = 0.25
StartValue = (0.0, -25.0, 0.0)
EndValue = (0.0, 25.0, 0.0)

Here we need to use 2 slots that affects the position so as to be able to have a circle motion.
The first slot, CircleX, will apply a sine curve on the X component of our object's position.
The second slot, CircleY, will apply the same curve (with a different amplitude) on its Y component.

我们使用两个时间段来控制它的位置，这样才能做出一个圆形的运动。第一个时间段是CircleX，他将会应
用在对象的X轴向的振幅。第二个时间段CircleY,会产生一个同样幅度的作用效果在Y轴上。

如果我们不更改CircleY的相位，是不会发生圆形的运动。

现在假设一个正弦曲线，在初始值(StartValue)是相位0，准备增加

在相位0。25的时候，到达中间点，将会继续增加

在相位0.5的时候，到达最高值(EndValue)，准备下降

http://baike.baidu.com/view/26056.htm?fr=ala0_1_1
https://en.wikipedia.org/wiki/anisotropic
https://en.wikipedia.org/wiki/anisotropic
https://en.wikipedia.org/wiki/anisotropic
https://en.wikipedia.org/wiki/isotropic
https://en.wikipedia.org/wiki/isotropic
https://en.wikipedia.org/wiki/isotropic

Last update: 2025/09/30 17:26 (4 months ago) cn:orx:tutorials:fx https://orx-project.org/wiki/cn/orx/tutorials/fx?rev=1285222695

https://orx-project.org/wiki/ Printed on 2026/01/16 08:05 (0 seconds ago)

在相位0.75的时候，回到中间点，继续下降

在相位1.0的时候，就跟相位0（StartValue）是一样的了

注意：这段描述正弦曲线的工作过程也同样适用于三角形，但是却不适用于线形。

我们将略过大多数其他的特效，因为那里没有什么我们不知道的新知识了。

但是我们还是要迅速的看一眼翻转的特效，他将会向我们展示如何翻转一个对象。就像Paper Mario Wii4)

的风格.

[FlipFX]
SlotList = Flip

[Flip@Wobble]
EndTime = 0.5
Period = 1.0
Amplification = 1.0
EndValue = (-1.0, 1.0, 1.0)

看到了吧，我们很简单的使用负值完成了这个效果!
同时也注意到，我们给Period(周期)设了一个明确的值。
我们选了一个两倍于定义的正弦曲线的Period，这样我们就只使用了正弦曲线的上升的那一半。同时，
我们也将Amplification改回了1。（在““Wobble”“中被设为0）

资源

源代码: 07_FX.c

配置文件: 07_FX.ini

1)

九天注：这里作者有点穿越了，需要看下面的例子才能懂，作者定义了一个仅包含一个Bool值的结
构MyObject，这里的括号，作者打在了orxOBJECT后面，我费解了N久，其实应该修饰个性数据，所以个人
调整了一下。
2)

九天注：本来一个对象可以同时有4个特效发生，这里作者仅仅是告诉你怎么使用“个性数据”才这样做
的，所以说仅仅具有教育意义。
3)

Z值不影响2D元素
4)

九天注：Wii上的 纸片马里奥是个很出名的游戏，作者的意思就是这里的flip描述的就是那个游戏里面的
风格和效果

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/cn/orx/tutorials/fx?rev=1285222695

Last update: 2025/09/30 17:26 (4 months ago)

https://orx.svn.sourceforge.net/svnroot/orx/trunk/tutorial/src/07_FX/07_FX.c
https://orx.svn.sourceforge.net/svnroot/orx/trunk/tutorial/bin/07_FX.ini
https://en.wikipedia.org/wiki/Paper Mario
https://en.wikipedia.org/wiki/Paper Mario
https://orx-project.org/wiki/
https://orx-project.org/wiki/cn/orx/tutorials/fx?rev=1285222695

2026/01/16 08:05 (0 seconds ago) 7/7 fx

Orx Learning - https://orx-project.org/wiki/

	特效教程(FX)
	综述
	详细内容
	资源

