
2026/02/07 16:24 (0 seconds ago) 1/5 viewport

Orx Learning - https://orx-project.org/wiki/

本页由 落后的簔羽鹤 翻译自 官方的教程。

视口与摄像机(viewport & camera)教程

综述

前面的基本教程基础, 对象创建, 时钟 , 帧层次结构 和 动画。

此教程显示了如何使用有多个摄像机的多视口技术。教程中将同时创建4个视口。

分别为左上角的（Viewport1），右下角的（Viewport4），它们共用一个摄像机(Camera1)，实现此功能，只需
要在配置文件中配置2个视口的Camera属性，为同一个(也就是Camera1)。当我们使用鼠标的左右键旋转
摄像机(Camera1),left Control或left Shift键+方向键进行摄像机的缩放操作，关联的两个Viewport1
和Viewport4将相应的发生变化。

右上角视口（Viewport2）是基于另一个摄像机（Camrea2），此摄像机的视锥较第一个窄，所以显示时比例是
其的两倍大。在教程的程序中，我们不能通过任何操作设置此视口。

最后一个视口（Viewport3）是基于Camera3的，Camera3的配置与Camera1完全一样。

NB：当两个视口重叠，较先创建的将显示在顶层。

最后，有一个固定不动的箱子和一个世界坐标随着鼠标实时移动的小兵，也就是说无论如何设置视口的摄
像机，无论鼠标在那个视口上移动，小兵在它所属的视口中，相对于鼠标在在屏幕中的位置移动。

在配置文件中使用随机关键字符‘~’,使的视口和基本对象的颜色和大小可以随机创建。

NB：摄像机将它的坐标/缩放尺度/旋转存放在orxFRAME 结构中，在frame教程中我们看到他们
是orxFrame 继承体系的一部分。另一方面Object应该置于其Camera所关联的Viewport中。1)

详细说明

常我们需要首先载入配置文件，创建时钟和注册回调的 Update函数，最后创建主要的Object信息。关于
实现的详情，请联系前面的教程。

虽然这次我们创建了4个视口，却没有什么新东西，仅仅是以下4行代码。

pstViewport = orxViewport_CreateFromConfig("Viewport1");
orxViewport_CreateFromConfig("Viewport2");
orxViewport_CreateFromConfig("Viewport3");
orxViewport_CreateFromConfig("Viewport4");

正如你所看到的，我们只使用了 Viewport1的引用，以便后面进行操作。

让我们直接跳到Update函数的代码。

首先我们通过捕捉鼠标的坐标，设置士兵的位置。我们已经在frame tutorial里实现过了。这里我们做了一
样的事情，但在4个视口中工作的都很完美。当鼠标离开视口时，世界坐标的指针，将被orxNull值所代替，

https://orx-project.org/wiki/en/orx/tutorials/viewport
https://orx-project.org/wiki/cn/orx/tutorials/main
https://orx-project.org/wiki/cn/orx/tutorials/object
https://orx-project.org/wiki/cn/orx/tutorials/clock
https://orx-project.org/wiki/cn/orx/tutorials/frame
https://orx-project.org/wiki/cn/orx/tutorials/anim
https://orx-project.org/wiki/cn/orx/tutorials/frame

Last update: 2025/09/30 17:26 (4 months
ago) cn:orx:tutorials:viewport https://orx-project.org/wiki/cn/orx/tutorials/viewport?rev=1278643404

https://orx-project.org/wiki/ Printed on 2026/02/07 16:24 (0 seconds ago)

也就不会触发士兵的移动了。

orxVECTOR vPos;

if(orxRender_GetWorldPosition(orxMouse_GetPosition(&vPos), &vPos) !=
orxNULL)
{
 orxVECTOR vSoldierPos;

 orxObject_GetWorldPosition(pstSoldier, &vSoldierPos);
 vPos.fZ = vSoldierPos.fZ;

 orxObject_SetPosition(pstSoldier, &vPos);
}

在操作视口之前，我们先关注下视口所关联的摄像机，我们可以移动，旋转和缩放它。获取摄像机的代码
如下所示：

pstCamera = orxViewport_GetCamera(pstViewport);

非常简单。让我们实现旋转。 2).

if(orxInput_IsActive("CameraRotateLeft"))
{
 orxCamera_SetRotation(pstCamera, orxCamera_GetRotation(pstCamera) +
orx2F(-4.0f) * _pstClockInfo->fDT);
}

我们再次看到旋转的角度时间并不依赖于FPS而是时钟的DT。我们也可以通过设置System这个配置选项来
设置旋转速度，而不是使用硬编码。

实现缩放如下：

if(orxInput_IsActive("CameraZoomIn"))
{
 orxCamera_SetZoom(pstCamera, orxCamera_GetZoom(pstCamera) * orx2F(1.02f));
}

因为这个代码没有使用时钟信息，所以他将会被时钟频率和帧率所影响。 最后让我们移动摄像机。

orxCamera_GetPosition(pstCamera, &vPos);

if(orxInput_IsActive("CameraRight"))
{
 vPos.fX += orx2F(500) * _pstClockInfo->fDT;
}

orxCamera_SetPosition(pstCamera, &vPos);

好了，与摄像机有关的先到这里吧。 在下面的配置中我们将看到，同一个摄像机被连接到两个不同的视

2026/02/07 16:24 (0 seconds ago) 3/5 viewport

Orx Learning - https://orx-project.org/wiki/

口。操作摄像机将同时影响两个视口。

我们可以直接修改视口的位置和尺寸，如下所示：

orxFLOAT fWidth, fHeight, fX, fY;

orxViewport_GetRelativeSize(pstViewport, &fWidth, &fHeight);

if(orxInput_IsActive("ViewportScaleUp"))
{
 fWidth *= orx2F(1.02f);
 fHeight*= orx2F(1.02f);
}

orxViewport_SetRelativeSize(pstViewport, fWidth, fHeight);

orxViewport_GetPosition(pstViewport, &fX, &fY);

if(orxInput_IsActive("ViewportRight"))
{
 fX += orx2F(500) * _pstClockInfo->fDT;
}

orxViewport_SetPosition(pstViewport, fX, fY);

如上 所示，没有什么惊奇的，非常简单。

让我们来接着看看 viewport的配置方面的东西。

[Viewport1]
Camera = Camera1
RelativeSize = (0.5, 0.5, 0.0)
RelativePosition = top left
BackgroundColor = (0, 100, 0) ~ (0, 255, 0)

[Viewport2]
Camera = Camera2
RelativeSize = @Viewport1
RelativePosition = top right
BackgroundColor = (100, 0, 0) ~ (255, 0, 0)

[Viewport3]
Camera = Camera3
RelativeSize = @Viewport1
RelativePosition = bottom left
BackgroundColor = (0, 0, 100) ~ (0, 0, 255)

[Viewport4]
Camera = @Viewport1
RelativeSize = @Viewport1
RelativePosition = bottom right

Last update: 2025/09/30 17:26 (4 months
ago) cn:orx:tutorials:viewport https://orx-project.org/wiki/cn/orx/tutorials/viewport?rev=1278643404

https://orx-project.org/wiki/ Printed on 2026/02/07 16:24 (0 seconds ago)

BackgroundColor = (255, 255, 0)#(0, 255, 255)#(255, 0, 255)

我们可以看到，还是没有什么新的让人惊喜的东西。
一共有3个摄像机，它们关联了4个视口，其中Camera1关联了Viewport1和Viewport4。
我们注意到Viewport1的配置文件中relativeSize设置为（0.5,0.5,0）.它代表的意思在x轴和y轴方向上分
别使用一半的显示尺寸（z轴被忽略）。也就是说，任何一个视口实际上显示部分的内容是可调的，可以是
全屏或者非全屏。
接下来我们注意到其他视口的RelativeSize属性被设置成@Viewport1。它的意思是RelativeSize属性继
承Viewport1的 RelativeSize属性，也就是说它们的RelativeSize属性和Viewport1的RelativeSize属性一样。
我们也可以看到 Viewport4的Camera属性被设置成@Viewport1,表明它继承自Viewport1的摄像机。

为了避免视口在屏幕中互相重叠遮盖，我们可以设置RelativePosition属性为常量字符3)或者使用vector设
置它们的合理位置。

最后前三个视口使用随机的红色作为背景颜色，设置如下：

BackgroundColor = (200, 0, 0) ~ (255, 0, 0)

意思是这个viewpor将使用一个随机的红色.4) 如果我们希望通过准确的随机颜色进行设置，可以使用一下
列表的形式设置，随机的颜色分别为黄、青和品红，设置如下：

BackgroundColor = (255, 255, 0)#(0, 255, 255)#(255, 0, 255)

This gives three possibilities for our random color: yellow, cyan and magenta. 这种使用方式是相当于在
三个颜色（黄色，蓝绿色，品红）中进行随机。

最后让我们关注摄像机的设置。

[Camera1]
FrustumWidth = @Display.ScreenWidth
FrustumHeight = @Display.ScreenHeight
FrustumFar = 1.0
FrustumNear = 0.0
Position = (0.0, 0.0, -1.0)

[Camera2]
FrustumWidth = 400.0
FrustumHeight = 300.0
FrustumFar = 1.0
FrustumNear = 0.0
Position = (0.0, 0.0, -1.0)

[Camera3@Camera1]

我们仅仅定义了他们的 frustum(视锥) (被摄像机所拍摄的世界空间的一部分，将被映射到视口显示).
NB: 因为我们使用的“2D”的摄像头, 视锥的形状是 rectangular cuboid(长方体).

我们可以发现Camera3完全继承自Camera1，它没有覆盖Camera1的任何属性。他们有完全一样的属性。
NB:使用完全继承所有属性可以写成：[MySection@ParentSection]。
为什么实用两个不同的摄像头呢？仅仅因为可以有两个不同的物理实体(physical entities)：我们在代码中
修改了Camera1的属性，而 Camara3将保持不变。

https://en.wikipedia.org/wiki/Viewing_frustum
https://en.wikipedia.org/wiki/Viewing_frustum
https://en.wikipedia.org/wiki/Viewing_frustum
https://en.wikipedia.org/wiki/Cuboid#Rectangular_cuboid
https://en.wikipedia.org/wiki/Cuboid#Rectangular_cuboid
https://en.wikipedia.org/wiki/Cuboid#Rectangular_cuboid

2026/02/07 16:24 (0 seconds ago) 5/5 viewport

Orx Learning - https://orx-project.org/wiki/

我们注意到Camera1的FrustumWidth和FrustumHeight属性继承自Display的屏幕设置。
NB: 当继承某个属性，可以写成MyKey = @ParentSection.ParentKey.当两个key一样时，其中父选关键字
可以省略如：SameKey = @ParentSection.

最后我们注意到Camera2具有较小的视锥。

也就是说Camera2只能看到世界空间的较小部分。所以视口看起来具有了放大的效果!

资源

源代码: 05_Viewport.c

配置文件: 05_Viewport.ini

1)

比如，在HUD（游戏运行时的状态栏）和UI（界面）中很有用
2)

其他方向仅仅只有部分代码，但是逻辑是一样的
3)

由关键字 top,bottom,center,right和left组成
4)

'~' 字符被用在两个数字之间，作为随机操作符

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/cn/orx/tutorials/viewport?rev=1278643404

Last update: 2025/09/30 17:26 (4 months ago)

https://orx.svn.sourceforge.net/svnroot/orx/trunk/tutorial/src/05_Viewport/05_Viewport.c
https://orx.svn.sourceforge.net/svnroot/orx/trunk/tutorial/bin/05_Viewport.ini
https://orx-project.org/wiki/
https://orx-project.org/wiki/cn/orx/tutorials/viewport?rev=1278643404

	视口与摄像机(viewport & camera)教程
	综述
	详细说明
	资源

