
2025/04/02 16:57 (0 seconds ago) 1/29 How to write a 2D UFO game

Orx Learning - https://orx-project.org/wiki/

This is a document in progress. Intended to be both a video tutorial, and and
article served from gamedev.net

Introduction

Welcome to the 2D UFO game guide using the Orx Portable Game Engine.

Hello, my name is Wayne, and my aim for this tutorial is to take you through all the steps to build a
UFO game from scratch.

Before I begin, I should openly acknowledge that this series is cheekily inspired by the 2D UFO tutorial
written for Unity.

This was chosen as it makes an excellent comparison of the approaches between Orx and Unity. It is
also a perfect way to highlight one of the major parts that makes Orx unique among other game
engines, its Configuration System.

You'll get very familiar with this system very soon. It's at the very heart of just about every game
written using Orx.

If you are very new to game development, don't worry. We'll take it nice and slow and try to explain
everything in very simple terms. The only knowledge you will need is some simple c++.

The aim of our game is to allow the player to control a UFO by applying physical forces to move it
around. The player must collect pickups to increase their score to win.

1. Introduction to the 2D UFO Project

You will need a blank project for Visual Studio 2015, CodeLite or Code::Blocks in which you can use to
work through the steps in this tutorial. We have one already prepared that you can use straight away.
Download it here.

Once you have that, unzip the package to somewhere on your harddrive.

Inside the build folder, you'll find a windows folder. In there are three projects, one for Visual
Studio, CodeLite and Code::Blocks.

Open the folder for the IDE you would like to use. Click MyGame.sln to open in Visual Studio,
MyGame.workspace for CodeLite, or MyGame.workspace for Code::Blocks.

When the blank template loads, there are two main folders to note in your solution:

config
src

Last update: 2018/02/14 00:47 (7 years ago) en:guides:ufo:main https://orx-project.org/wiki/en/guides/ufo/main?rev=1518583674

https://orx-project.org/wiki/ Printed on 2025/04/02 16:57 (0 seconds ago)

Firstly, the src folder contains a single source file, MyGame.cpp. This is where we will add the c++
code for the game. The config folder contains configuration files for our game.

What is config?

Orx is a data driven 2D game engine. Many of the elements in your game, like objects, spawners,
music etc, do not need to defined in code. They can be defined (or configured) using config files.

You can make a range of complex multi-part objects with special behaviours and effects in Orx, and
bring them into your game with a single line of code. You'll see this in the following chapters of this
guide.

There are three config files in the config folder, but only one will actually be used in our game. This is:

MyGame.ini

All our game configuration will be done there.

There are two other config files:

CreationTemplate.ini
SettingsTemplate.ini

These are example configs and they list all the properties and values that are available to you. We will
mainly concentrate on referring to the CreationTemplate.ini, which is for objects, sounds, etc.

The code template

Now to take a look at the basic MyGame.cpp and see what is contained there.

The first function is the Init() function.

This function will execute when the game starts up. Here you can create objects have been defined in
the config, or perform other set up tasks like handlers. We'll do both of these soon.

The Run() function is executed every main clock cycle. This is a good place to continually perform a
task. Though there are better alternatives for this, and we will cover those later. This is mainly used to
check for the quit key.

The Exit() function is where things are cleaned up when your game quits. Orx cleans up nicely after
itself. We won't use this function as part of this guide.

The Bootstrap() function is an optional function to use. This is used to tell Orx where to find the first
config file for use in our game (MyGame.ini). There is another way to do this, but for now, we'll use
this function to inform Orx of the config.

Then of course, the main() function. We do not need to use this function in this guide.

You should be able to compile successfully. Run the program and an Orx logo will appear slowly

2025/04/02 16:57 (0 seconds ago) 3/29 How to write a 2D UFO game

Orx Learning - https://orx-project.org/wiki/

rotating.

Great. So now you have everything you need to start building the UFO game.

2. Setting up the game assets

Our game will have a background, a UFO which the player will control, and some pickups that the
player can collect.

The UFO will be controlled by the player using the cursor keys.

First you'll need the assets to make the game. You can download the gameassets.zip file which will
contain:

The background file (background.png):

The UFO and Pickup sprite images (ufo.png and pickup.png):

And a pickup sound effect (pickup.ogg):

Unzip this file to a temporary location on your harddrive.

Copy the three .png files into your data/object folder

Copy the .ogg file into your data/sound folder.

Now these files can be accessed by your project and be included in the game.

Setting up the Playfield

We will start by setting up the background object. This is done using config.

Open the MyGame.ini config file in your editor and add the following:

[BackgroundGraphic]
Texture = background.png
Pivot = center

The [BackgroundGraphic] defined here is called a Graphic Section. It has two properties defined.
The first is Texture which has been set as background.png.

The Orx library know where to find this image, due to the properties set in the [Resource] section:

https://orx-project.org/wiki/_detail/guides/ufo/ufo.png?id=en%3Aguides%3Aufo%3Amain
https://orx-project.org/wiki/_detail/guides/ufo/pickup.png?id=en%3Aguides%3Aufo%3Amain

Last update: 2018/02/14 00:47 (7 years ago) en:guides:ufo:main https://orx-project.org/wiki/en/guides/ufo/main?rev=1518583674

https://orx-project.org/wiki/ Printed on 2025/04/02 16:57 (0 seconds ago)

[Resource]
Texture = ../../data/object

So any texture files that are required (just like in our [BackgroundGraphic] section) will be located in
the ../../data/object folder.

The second parameter is Pivot. A pivot is the handle (or sometimes “hotspot” in other frameworks).
This is set to be center. The position is 0,0 by default, just like the the camera. The effect is to ensure
the background sits in the center of our game window.

There are other values available for Pivot. To see the list of values, open the CreationTemplate.ini file
in your editor. Scroll to the [GraphicTemplate] section and find Pivot in the list. There you can see all
the possible values that could be used.

top left is also a popular value.

We need to define an object that will make use of this graphic. This will be the actual entity that is
used in the game:

[BackgroundObject]
Graphic = BackgroundGraphic
Position = (0, 0, 0)

The Graphic property is the section BackgroundGraphic that we defined earlier. Our object will use
that graphic.

The second property is the Position. In our world, this object will be created at (0, 0, 0). In Orx, the
coordinates are (x, y, z). It may seem strange that Orx, being a 2D game engine has a Z axis. Actually
Orx is 2.5D. It respects the Z axis for objects, and can use this for layering above or below other
objects in the game.

To make the object appear in our game, we will add a line of code in our source file to create it.

In the Init() function of MyGame.cpp, remove the default line:

orxObject_CreateFromConfig("Object");

and replace it with:

orxObject_CreateFromConfig("BackgroundObject");

Compile and run.

The old spinning logo is now replaced with a nice tiled background object.

Next, the ufo object is required. This is what the player will control.

First create the configuration for the ufo object:

[UfoObject]
Graphic = UfoGraphic

2025/04/02 16:57 (0 seconds ago) 5/29 How to write a 2D UFO game

Orx Learning - https://orx-project.org/wiki/

Position = (0, 0, -0.1)

Then the UfoGraphic which the object needs:

[UfoGraphic]
Texture = ufo.png
Pivot = center

Unlike the background object, our ufo object will need to be assigned to a variable. This will make it
possible to affect the ufo using code:

Create the variable for our ufo object just under the orx.h include line:

#include "orx.h"
orxOBJECT *ufo;

And in the Init() function, create an instance of the ufo object with:

ufo = orxObject_CreateFromConfig("UfoObject");

Compile and run. You'll see a ufo object in front of the background. Excellent.

Let's talk a little about the Z axis positions of the ufo, the background and the camera. It's worth
explaining to get a good understand of how cameras and frustums work.

The following diagram will illustrate how our camera and objects are laid out:

Note that the Camera z-position in the config is: -1.0 The UFO z-position is: -0.1 The Background z-
position is: 0.0

So 0.0 is the maximum distance in our game, and -1.0 is the potential minimum distance (the position
of the camera's lens).

Also note the camera's Near and Far frustum range is 0.0 and 2.0 respectively. This range is a relative
value based on the camera's z-position. Therefore, our camera can see objects between z-positions
-1.0 and 1.0.

That's good, because our ufo and background are in that range: -0.1 and 0.0. As long as any objects
have a z-position less than 0.0, they will be sure to be in front of the background.

And as long as any objects have a z-position greater than -1.0, the camera will show them.

Time to move to something a little more fun, moving the ufo.

Controlling the UFO

The ufo is going to be controlled using the cursor arrow keys on the keyboard.

Last update: 2018/02/14 00:47 (7 years ago) en:guides:ufo:main https://orx-project.org/wiki/en/guides/ufo/main?rev=1518583674

https://orx-project.org/wiki/ Printed on 2025/04/02 16:57 (0 seconds ago)

The ufo will be moved by applying forces. Physics will be set up in the project in order to do this.

Also, we will use a clock to call an update function every frame (?) which will read and respond to key
presses.

Defining the keys is very straight forward. In the config file, expand the MainInput section by adding
the four cursor keys:

[MainInput]
KEY_ESCAPE = Quit
KEY_UP = GoUp
KEY_DOWN = GoDown
KEY_LEFT = GoLeft
KEY_RIGHT = GoRight

Each key is being given a label name. These label names are available in our code to test against.

The next step is to create an update callback function in our code where we will continually check if
the keys are pressed:

void orxFASTCALL Update(const orxCLOCK_INFO *_pstClockInfo, void *_pContext)
{
}

And in order to tie this function to a clock (the clock will execute this function over and over), add the
following to the Init() function:

orxClock_Register(orxClock_FindFirst(orx2F(-1.0f), orxCLOCK_TYPE_CORE),
Update, orxNULL, orxMODULE_ID_MAIN, orxCLOCK_PRIORITY_NORMAL);

That looks very scary and intimidating, but the only part that is important to you is the parameter
with “Update”. This means, tell the existing core clock to continually call our “Update” function. Of
course you can specify any function name here you like as long as it exists.

Let's test a key to ensure that all is working well. Add the following code into the Update function:

void orxFASTCALL Update(const orxCLOCK_INFO *_pstClockInfo, void *_pContext)
{
 if (ufo) {

 if (orxInput_IsActive("GoLeft")) {
 orxLOG("LEFT PRESSED!");
 }
 }
}

Every time Update is run, ufo is tested to ensure it exists, and then moves to check the input system
for the label “GoLeft”, and if it is Active (or pressed). Remember how GoLeft is bound to KEY_LEFT in
the MainInput config section?

If that condition is true, send “LEFT PRESSED!” to the console output window while the key is pressed

2025/04/02 16:57 (0 seconds ago) 7/29 How to write a 2D UFO game

Orx Learning - https://orx-project.org/wiki/

or held down.

Soon we'll replace the orxLOG line with a function that places force on the ufo. But before that, we
need to add physics to the ufo.

Compile and run.

Press the left arrow key and take note of the console window. Every time you press or hold the key,
the message is printed. Good, so key presses are working.

Physics

In order to affect the ufo using forces, physics need to be enabled.

Begin by adding a Physics config section and setting Gravity with:

[Physics]
Gravity = (0, 980, 0)

In order for an object in Orx to be affected by physics, it needs both a dynamic body, and at least one
bodypart. Give the ufo a body with the Body property:

[UfoObject]
Graphic = UfoGraphic
Position = (0, 0, -0.1)
Body = UfoBody

Next, create the UfoBody section and define the UfoBodyPart property:

[UfoBody]
Dynamic = true
PartList = UfoBodyPart

The body part is set to Dynamic which means that it is affected by gravity and collisions. A body
needs at least one part, and so we need to define the UfoBodyPart:

[UfoBodyPart]
Type = sphere
Solid = true

The body part Type is set to be a sphere which will automatically size itself around the object's size,
and the body is to be solid so that if it should collide with anything, it will not pass through it.

Compile and Run.

The ufo falls through the floor. This is because of the gravity setting of 980 in the y axis which
simulates world gravity.

Our game is a top down game. So change the Gravity property to:

Last update: 2018/02/14 00:47 (7 years ago) en:guides:ufo:main https://orx-project.org/wiki/en/guides/ufo/main?rev=1518583674

https://orx-project.org/wiki/ Printed on 2025/04/02 16:57 (0 seconds ago)

[Physics]
Gravity = (0, 0, 0)

Re-run (no compile needed) and the ufo should remain in the centre of the screen.

The Physics section has another handy property available to visually test physics bodies on objects:
ShowDebug. Add this property with true:

[Physics]
Gravity = (0, 0, 0)
ShowDebug = true

Re-run, and you will see a pinkish sphere outline automatically sized around the ufo object. For now
we'll turn that off again. You can do this by changing the value to false, adding a ; comment in front
of the line or simply just deleting the line. We'll set our debug to false:

[Physics]
Gravity = (0, 0, 0)
ShowDebug = false

Let's add some force to the ufo if the left cursor key is pressed. Change the code in the Update
function to be:

void orxFASTCALL Update(const orxCLOCK_INFO *_pstClockInfo, void *_pContext)
{
 if (ufo) {

 const orxFLOAT FORCE = 0.8;
 orxVECTOR leftForce= { -FORCE, 0, 0 };

 if (orxInput_IsActive("GoLeft")) {
 orxObject_ApplyForce(ufo, &leftForce, orxNULL);
 }
 }
}

The orxObject_ApplyForce function takes an orxVECTOR facing left and applies it to the ufo
object.

Compile and re-run.

If you press and release the left arrow key, the ufo will move to the left. If you hold the left key down,
the ufo will increase its speed and move out the left hand side of the screen.

Even if you tap the left key once quickly, the ufo will still eventually travel out of the left of the screen.
There is no friction yet to slow it down, or any barriers to stop it going out of the screen.

Even though the background looks it has a border, it is really only a picture. In order to create a
barrier for the ufo, we will need to wrap the edges using some body parts.

This means, the background object will also be given a body, and four body parts, one for each wall.

2025/04/02 16:57 (0 seconds ago) 9/29 How to write a 2D UFO game

Orx Learning - https://orx-project.org/wiki/

Start with adding a body to the object:

[BackgroundObject]
Graphic = BackgroundGraphic
Position = (0, 0, 0)
Body = WallBody

And then the body itself:

[WallBody]
Dynamic = false
PartList = WallTopPart # WallRightPart # WallBottomPart # WallLeftPart

This is different to the ufo body. This one is not dynamic. This means that it is a static body, one that
cannot be affected by gravity. But dynamic objects can still collide with it. Also, there are four parts to
this body, unlike the ufo which only had one.

Start with the WallTopPart first:

[WallTopPart]
Type = box
Solid = true
TopLeft = (-400, -300, 0)
BottomRight = (400, -260, 0)

In this part, use a box body part. Ensure it is solid for collisions, ie so that a dynamic object can
collide with it but not pass though it.

Stretch the box to cover the region from (-400,-300) to (400, -260)

At this point, it might be a good idea to turn on the physics debugging to check our work:

[Physics]
Gravity = (0, 0, 0)
ShowDebug = true

Re-run the project.

The top wall region should cover the top barrier squares:

[]

Great. Next, we'll do the right hand side. But rather than copy all the same values, we'll reuse some
from the top wall:

[WallRightPart@WallTopPart]
TopLeft = (360, -260,0)
BottomRight = (400, 260, 0)

Notice the @WallTopPart in the section name? This means: copy all the values from WallTopPart,
but any properties in WallRightPart will take priority.

Last update: 2018/02/14 00:47 (7 years ago) en:guides:ufo:main https://orx-project.org/wiki/en/guides/ufo/main?rev=1518583674

https://orx-project.org/wiki/ Printed on 2025/04/02 16:57 (0 seconds ago)

Therefore, use the Type, and Solid properties from WallTopPart, but use our own values for
TopLeft and BottomRight for the WallRightPart section.

This is called “Section Inheritance”. This will come in very handy soon when we tweak values or add
new properties to all four wall parts.

Re-run the project, and there will now be two walls.

Define the last two walls using the same technique:

[WallBottomPart@WallTopPart]
TopLeft = (-400,260,0)
BottomRight = (400, 300, 0)

[WallLeftPart@WallTopPart]
TopLeft = (-400,-260,0)
BottomRight = (-360, 260, 0)

Now there are four walls for the ufo to collide with.

Re-run and try moving the ufo left into the wall.

Oops, it doesn't work. It still passes straight though. There is one last requirement for the collision to
occur: we need to tell the physics system, who can collide with who.

This is done with flags and masks.

Make a change to the ufo's body part by adding SelfFlags and CheckMask:

[UfoBodyPart]
Type = sphere
Solid = true
SelfFlags = ufo
CheckMask = wall

SelfFlags is the label you assign to one object, and CheckMask is the list of labels that your object
can collide with.

These labels don't have to match the names you give objects, however it will help you stay clean and
organised.

So above we are saying, the UfoBodyPart is a “ufo” and it is expected to collide with any bodypart
marked as a “wall”.

But we haven't done that yet, so let's do it now. We will only need to add it to the WallTopPart:

[WallTopPart]
Type = box
Solid = true
SelfFlags = wall
CheckMask = ufo
TopLeft = (-400, -300, 0)

2025/04/02 16:57 (0 seconds ago) 11/29 How to write a 2D UFO game

Orx Learning - https://orx-project.org/wiki/

BottomRight = (400, -260, 0)

Remember, that the other three wall parts inherit the values from WallTopPart. So each now carries
the label of “wall” and they will collide with any other body part that carries the label of “ufo”.

Re-run and notice the ufo's debug region becomes mauve rather than pink.

Press the left arrow key and drive the ufo into the left wall. It collides! And it stops.

Now that the collision is working, we can flesh out the rest of the keyboard controls and test all four
walls:

void orxFASTCALL Update(const orxCLOCK_INFO *_pstClockInfo, void *_pContext)
{
 if (ufo) {

 const orxFLOAT FORCE = 0.8;

 orxVECTOR rightForce = { FORCE, 0, 0 };
 orxVECTOR leftForce = { -FORCE, 0, 0 };
 orxVECTOR upForce = { 0, -FORCE, 0 };
 orxVECTOR downForce = { 0, FORCE, 0 };

 if (orxInput_IsActive("GoLeft")) {
 orxObject_ApplyForce(ufo, &leftForce, orxNULL);
 }
 if (orxInput_IsActive("GoRight")) {
 orxObject_ApplyForce(ufo, &rightForce, orxNULL);
 }
 if (orxInput_IsActive("GoUp")) {
 orxObject_ApplyForce(ufo, &upForce, orxNULL);
 }
 if (orxInput_IsActive("GoDown")) {
 orxObject_ApplyForce(ufo, &downForce, orxNULL);
 }
 }
}

Now is a good time to turn off the physics debug as we did earlier on.

Compile and run.

Try all four keys, and you should be able to move the ufo around the screen. The ufo can also collide
with each wall.

The ufo is a little boring in the way that it doesn't spin when colliding with a wall.

We need to ensure the UfoBody is not using fixed rotation. While this value defaults to false when not
supplied, it will make things more readable if we explicitly set it:

[UfoBody]
Dynamic = true

Last update: 2018/02/14 00:47 (7 years ago) en:guides:ufo:main https://orx-project.org/wiki/en/guides/ufo/main?rev=1518583674

https://orx-project.org/wiki/ Printed on 2025/04/02 16:57 (0 seconds ago)

PartList = UfoBodyPart
FixedRotation = false

The active ingredient here is to ensure that both the wall bodypart and the ufo bodypart both have a
little friction applied. This way when they collide, they will drag against each other and produce some
spin:

[UfoBodyPart]
Type = sphere
Solid = true
SelfFlags = ufo
CheckMask = wall
Friction = 1.2

[WallTopPart]
Type = box
Solid = true
SelfFlags = wall
CheckMask = ufo
TopLeft = (-400, -300, 0)
BottomRight = (400, -260, 0)
Friction = 1.2

Re-run that and give it a try. Run against a wall on angle to get some spin on the ufo.

The next thing to notice is that both the movement of the ufo and the spin never slow down. There is
no friction to slow those down.

We'll deal with the spin first. By adding some AngularDamping on the UfoBody, the spin will slow
down over time:

[UfoBody]
Dynamic = true
PartList = UfoBodyPart
AngularDamping = 2
FixedRotation = false

Re-run and check the spin. Should be slowing down after leaving the wall.

Now for the movement. That can be done with LinearDamping on the UfoBody:

[UfoBody]
Dynamic = true
PartList = UfoBodyPart
LinearDamping = 5
AngularDamping = 2
FixedRotation = false

Re-run and the speed will slow down after releasing the arrow keys. But it's slower overall as well. Not
100% what we want.

2025/04/02 16:57 (0 seconds ago) 13/29 How to write a 2D UFO game

Orx Learning - https://orx-project.org/wiki/

You can increase the FORCE value in code, in the Update function to compensate:

const orxFLOAT FORCE = 1.8;

Compile and run. The speed should be more what we expect.

Another thing to notice about the ufo is that during mid-rotation, the drawing of the object is a little
rough. It would be nice to have some anti-alias (smoothing) on the object for rotations.

This is achieved with Smoothing:

[UfoObject]
Graphic = UfoGraphic
Position = (0, 0, -0.1)
Body = UfoBody
Smoothing = true

Another thing that would be nice, is for the ufo to be already spinning a little when the game starts.
For this, add a little AngularVelocity :

[UfoObject]
Graphic = UfoGraphic
Position = (0, 0, -0.1)
Body = UfoBody
Smoothing = true
AngularVelocity = 200

Run this and the ship will have a small amount of spin at the start until the AngularDamping on he
ufo body slows it down again.

Following the ufo with the camera

While we can simply move the ufo around with the keys on a fixed background, it will be a more
pleasant experience to have the ufo fixed and have the screen scroll around instead.

This effect can be achieved by parenting the camera to the ufo so that wherever the ufo goes, the
camera goes.

Currently, our project is set up so that the viewport has a camera configured to it. But the camera is
not available to our code.

We will require the camera to be available in a variable so that it can be parented to the ufo object.

To fix this add a line in the Init() function to extract the camera from the viewport into a variable:

 orxVIEWPORT *viewport = orxViewport_CreateFromConfig("Viewport");
 camera = orxViewport_GetCamera(viewport);

And because the 'camera' variable isn't defined, do so at the top of the code:

Last update: 2018/02/14 00:47 (7 years ago) en:guides:ufo:main https://orx-project.org/wiki/en/guides/ufo/main?rev=1518583674

https://orx-project.org/wiki/ Printed on 2025/04/02 16:57 (0 seconds ago)

#include "orx.h"
orxOBJECT *ufo;
orxCAMERA *camera;

Now it is time to parent the camera to the ufo:

ufo = orxObject_CreateFromConfig("UfoObject");
orxCamera_SetParent(camera, ufo);

Compile and Run.

Woah, hang on. That's crazy, the whole screen just rotated around when ufo. And it continues to
rotate when hitting the ufo against the walls. See how the camera is a child of the ufo now? Not only
does the camera move with the ufo, it rotates with it as well.

We certainly want it to move with the ufo, but it would be nice ignore the rotation from the parent ufo.
Add the IgnoreFromParent property:

[Camera]
FrustumWidth = 800
FrustumHeight = 600
FrustumFar = 2.0 ; WHAT IS THE TEMPLATE USING???
FrustumNear = 0.0
Position = (0.0, 0.0, -0.1) ;;PROBLEM: IS OUR TEMPLATE -0.1 or -1.0????
IgnoreFromParent = rotation

Re-run. That's got it fixed.

Content to Delete:

Wait the screen went blank. That not good. What happened?

Something changed when we made the camera a parent of
the ufo. When we did this, the camera's z position of -1.0
became relative to the ufo, and no longer relative to the
world.

Now the camera's z position moves the camera's frustum out
of viewing distance from the ufo and the background, giving
a blank screen. The camera's z position will need to be
adjusted to be closer to the ufo again:

[Camera]
FrustumWidth = 800
FrustumHeight = 600
FrustumFar = 1.0
FrustumNear = 0.0
Position = (0.0, 0.0, -0.1)

Re-run.

2025/04/02 16:57 (0 seconds ago) 15/29 How to write a 2D UFO game

Orx Learning - https://orx-project.org/wiki/

Now when you move around, the playfield will appear to scroll rather than it being the ufo that moves.
This makes for a more dramatic and interesting effect.

Creating Pickup Objects

In our game, the ufo will be required to collect objects scattered around the playfield.

When the ufo collides with one, the object will disappear, giving the impression that it has been
picked up.

Begin by creating a config section for the graphic, and then the pickup object:

[PickupGraphic]
Texture = pickup.png
Pivot = center

[PickupObject]
Graphic = PickupGraphic

The graphic will use the image pickup.png which is located in the project's data/object folder.

It will also be pivoted in the center which will be handy for a rotation effect later.

Finally, the pickup object uses the pickup graphic. Nice and easy.

Our game will have eight pickup objects. We need a simple way to have eight of these objects in
various places.

We will employ a nice trick to handle this. We will make an empty object, called PickupObjects
which will hold eight copies of the pickup object as child objects.

That way, wherever the parent is moved, the children move with it.

Add that now:

[PickupObjects]
ChildList = PickupObject1 # PickupObject2 # PickupObject3 # PickupObject4 #
PickupObject5 # PickupObject6 # PickupObject7 # PickupObject8
Position = (-400, -300, -0.1)

This object will have no graphic. That's ok. It can still act like any other object.

Notice the position. It is being positioned in the top left hand corner of the screen. All of the child
objects PickupObject1 to PickupObject8 will be positioned relative to the parent in the top left corner.

Now to create the actual children. We'll use the inheritance trick again, and just use PickupObject
as a template:

[PickupObject1@PickupObject]

Last update: 2018/02/14 00:47 (7 years ago) en:guides:ufo:main https://orx-project.org/wiki/en/guides/ufo/main?rev=1518583674

https://orx-project.org/wiki/ Printed on 2025/04/02 16:57 (0 seconds ago)

Position = (370, 70, -0.1)

[PickupObject2@PickupObject]
Position = (210, 140, -0.1)

[PickupObject3@PickupObject]
Position = (115, 295, -0.1)

[PickupObject4@PickupObject]
Position = (215, 445, -0.1)

[PickupObject5@PickupObject]
Position = (400, 510, -0.1)

[PickupObject6@PickupObject]
Position = (550, 420, -0.1)

[PickupObject7@PickupObject]
Position = (660, 290, -0.1)

[PickupObject8@PickupObject]
Position = (550, 150, -0.1)

Each of the PickupObject* objects uses the properties defined in PickupObject. And the only
difference between them are their Position properties.

The last thing to do is to create an instance PickupObjects in code in the Init() function:

orxObject_CreateFromConfig("PickupObjects");

Compile and Run.

Eight pickup objects should appear on screen. Looking good.

It would look good if the pickups rotated slowly on screen, just to make them more interesting. This is
very easy to achieve in Orx using FX.

FX can also be defined in config.

FX allows you to affect an object's position, colour, rotation, scaling, etc, even sound can use FX.

Change the PickupObject by adding a FXList property:

[PickupObject]
Graphic = PickupGraphic
FXList = SlowRotateFX

Clearly being an FXList you can have many types of FX placed on an object at the same time. We
will only have one.

An FX is a collection of FX Slots. FX Slots are the actual effects themselves. Confused? Let's work
through it. First, the FX:

2025/04/02 16:57 (0 seconds ago) 17/29 How to write a 2D UFO game

Orx Learning - https://orx-project.org/wiki/

[SlowRotateFX]
SlotList = SlowRotateFXSlot
Loop = true

This simply means, use some effect called SlowRotateFXSlot, and when it is done, do it again in a
loop.

Next the slot (or effect):

[SlowRotateFXSlot]
Type = rotation
StartTime = 0
EndTime = 10
Curve = linear
StartValue = 0
EndValue = 360

That's a few properties. First, the Type, which is a rotation FX.

The total time for the FX is 10 seconds, which comes from the StartTime and EndTime properties.

The Curve type is linear so that the values changes are done so in a strict and even manner.

And the values which the curve uses over the 10 second period starts from 0 and climbs to 360.

Re-run and notice the pickups now turning slowly for 10 seconds and then repeating.

The rotation redraw is a little rough, just like the ufo one was. What is a good solution? Add
smoothing:

[PickupObject]
Graphic = PickupGraphic
FXList = SlowRotateFX
Smoothing = true

Re-run. Much better.

Picking up the collectable objects

Time to make the ufo collide with the pickups. In order for this to work (just like for the walls) the
pickups need a body.

And the body needs to be set to collide with a ufo and vice versa.

First a body for the pickup template:

[PickupObject]
Graphic = PickupGraphic
FXList = SlowRotateFX

Last update: 2018/02/14 00:47 (7 years ago) en:guides:ufo:main https://orx-project.org/wiki/en/guides/ufo/main?rev=1518583674

https://orx-project.org/wiki/ Printed on 2025/04/02 16:57 (0 seconds ago)

Smoothing = true
Body = PickupBody

Then the body section itself:

[PickupBody]
Dynamic = false
PartList = PickupPart

Just like the wall, the pickup are not dynamic. We don't want them bouncing and traveling around as a
result of being hit by the ufo. They are static and need to stay in place if they are hit.

Next to define the PickupPart:

[PickupPart]
Type = sphere
Solid = false
SelfFlags = pickup
CheckMask = ufo

The pickup is sort of roundish, so we're going with a spherical type.

It is not solid. We want the ufo to able to pass through it when it collides. It should not influence the
ufo's travel at all.

The pickup is given a label of pickup and will only collide with an object with a label of ufo.

The ufo must reciprocate this arrangement (just like a good date) by adding pickup to its list of
bodypart check masks:

[UfoBodyPart]
Type = sphere
Solid = true
Friction = 1.2
SelfFlags = ufo
CheckMask = wall # pickup

This is a static bodypart, and we have specified collision actions to occur if the ufo collides with a
pickup. But it's a little difficult to test this right now. However you can turn on the debug again to
check the body parts:

[Physics]
Gravity = (0, 0, 0)
ShowDebug = true

Re-run to see the body parts.

Switch off again:

[Physics]
Gravity = (0, 0, 0)

2025/04/02 16:57 (0 seconds ago) 19/29 How to write a 2D UFO game

Orx Learning - https://orx-project.org/wiki/

ShowDebug = false

To cause a code event to occur when the ufo hits a pickup, we need something new: a physics
hander. The hander will run a function of ours whenever two objects collide.

We can test for these two objects to see if they are the ones we are interested in, and run some code
if they are.

First, add the physics hander to the end of the Init() function:

orxClock_Register(orxClock_FindFirst(orx2F(-1.0f), orxCLOCK_TYPE_CORE),
Update, orxNULL, orxMODULE_ID_MAIN, orxCLOCK_PRIORITY_NORMAL);
orxEvent_AddHandler(orxEVENT_TYPE_PHYSICS, PhysicsEventHandler);

This will create a physics handler, and should any physics event occur, (like two objects colliding) then
a function called PhysicsEventHandler will be executed.

Our new function will start as:

orxSTATUS orxFASTCALL PhysicsEventHandler(const orxEVENT *_pstEvent)
{

 if (_pstEvent->eID == orxPHYSICS_EVENT_CONTACT_ADD) {
 orxOBJECT *pstRecipientObject, *pstSenderObject;

 /* Gets colliding objects */
 pstRecipientObject = orxOBJECT(_pstEvent->hRecipient);
 pstSenderObject = orxOBJECT(_pstEvent->hSender);

 const orxSTRING recipientName = orxObject_GetName(pstRecipientObject);
 const orxSTRING senderName = orxObject_GetName(pstSenderObject);

 orxLOG("Object %s has collided with %s", senderName, recipientName);

 return orxSTATUS_SUCCESS;
 }
}

Every handler function passes an orxEVENT object in. This structure contains a lot of information
about the event.

The eID is tested to ensure that the type of physics event that has occurred is a
orxPHYSICS_EVENT_CONTACT_ADD which indicates when objects collide.

If true, then two orxOBJECT variables are declared, then set from the orxEVENT structure. They are
passed in as the hSender and hRecipient objects.

Next, two orxSTRINGs are declared and are set by getting the names of the objects using the
orxObject_GetName function. The name that is returned is the section name from the config.

Potential candidates are: UfoObject, BackgroundObject, and PickupObject1 to PickupObject8.

Last update: 2018/02/14 00:47 (7 years ago) en:guides:ufo:main https://orx-project.org/wiki/en/guides/ufo/main?rev=1518583674

https://orx-project.org/wiki/ Printed on 2025/04/02 16:57 (0 seconds ago)

The names are then sent to the console.

Finally, the function returns orxSTATUS_SUCCESS which is required by an event function.

Compile and run.

If you drive the ufo into a pickup or the edge of the playfield, a message will display on the console.
So we know that all is working.

Next is to add code to remove a pickup from the playfield if the ufo collides with it. Usually we could
compare the name of one object to another and perform the action.

In our case, however, the pickups are named different things: PickupObject1, PickupObject2,
PickupObject3… up to PickupObject8.

So we will need to actually just check if the name contains “PickupObject” which will match well for
any of them.

In fact, we don't need to test for the “other” object in the pair of colliding objects. Ufo is a dynamic
object and everything else on screen is static. So if anything collides with PickupObject*, it has to be
the ufo. Therefore, we won't need to test for that.

First, remove the orxLOG line. We don't need that anymore.

Change the function to become:

orxSTATUS orxFASTCALL PhysicsEventHandler(const orxEVENT *_pstEvent)
{

 if (_pstEvent->eID == orxPHYSICS_EVENT_CONTACT_ADD) {
 orxOBJECT *pstRecipientObject, *pstSenderObject;

 /* Gets colliding objects */
 pstRecipientObject = orxOBJECT(_pstEvent->hRecipient);
 pstSenderObject = orxOBJECT(_pstEvent->hSender);

 const orxSTRING recipientName = orxObject_GetName(pstRecipientObject);
 const orxSTRING senderName = orxObject_GetName(pstSenderObject);

 if (orxString_SearchString(recipientName, "PickupObject") != orxNULL) {
 orxObject_SetLifeTime(pstRecipientObject, 0);
 }

 if (orxString_SearchString(senderName, "PickupObject") != orxNULL) {
 orxObject_SetLifeTime(pstSenderObject, 0);
 }
 }

 return orxSTATUS_SUCCESS;
}

You can see the new code additions after the object names.

2025/04/02 16:57 (0 seconds ago) 21/29 How to write a 2D UFO game

Orx Learning - https://orx-project.org/wiki/

If an object name contains the word “PickupObject”, then the ufo must have collided with it.
Therefore, we need to kill it off. The safest way to do this is by setting the object's lifetime to 0.

This will ensure the object is removed instantly and deleted by Orx in a safe manner.

Notice that the test is performed twice. Once, if the pickup object is the sender, and again if the
object is the recipient.

Therefore we need to check and handle both.

Compile and run.

Move the ufo over the pickups and they should disappear nicely.

Sounds

It's great that collecting the pickups work, but a silent game is pretty bland. It would be great to have
a sound play whenever a pickup is collected.

Start by configuring a sound:

[PickupSound]
Sound = pickup.ogg
KeepInCache = true

Then as part of the collision detection in the PhysicsEventHandler function, we change the code
to be:

if (orxString_SearchString(recipientName, "PickupObject") != orxNULL) {
 orxObject_SetLifeTime(pstRecipientObject, 0);
 orxObject_AddSound(pstSenderObject, "PickupSound");
}

if (orxString_SearchString(senderName, "PickupObject") != orxNULL) {
 orxObject_SetLifeTime(pstSenderObject, 0);
 orxObject_AddSound(pstRecipientObject, "PickupSound");
}

In code above, if the recipient is a pickup object, then use the orxObject_AddSound function to
place our sound on the sender object. There's little point adding a sound to an object that is about to
be deleted.

And of course, if the pickup object is the sender, we add the sound to the recipient object. Also, the
PickupSound that is added to the object, is the config section name we just defined in the config.

Compile and run.

Hit the pickups and a sound will play.

You can also use sounds without code. There is an AppearSound section already available in the

Last update: 2018/02/14 00:47 (7 years ago) en:guides:ufo:main https://orx-project.org/wiki/en/guides/ufo/main?rev=1518583674

https://orx-project.org/wiki/ Printed on 2025/04/02 16:57 (0 seconds ago)

config.

We can use this sound on the ufo when it first appears in the game.

This is as simple as adding a SoundList property to the ufo:

[UfoObject]
Graphic = UfoGraphic
Position = (0, 0, -0.1)
Body = UfoBody
Smoothing = true
AngularVelocity = 200
SoundList = SoundAppear

Re-run and a nice sound plays at the start of the game.

Adding a score

What's a game without a score? We need to earn points for every pickup that is collected.

The great thing about Orx objects is that they don't have to contain a texture as a graphic. They can
contain a font and text rendered to a graphic instead. This is perfect for making a score object.

Start by adding some config for the ScoreObject:

[ScoreObject]
Graphic = ScoreTextGraphic
Position = (-380, -280, 0)

Next, to add the ScoreTextGraphic section, which will not be a texture, but text instead:

[ScoreTextGraphic]
Text = ScoreText

Now to define the ScoreText which is the section that contains the text information:

[ScoreText]
String = 10000

The String property contains the actual text characters. This will be the default text when a
ScoreObject instance is created in code.

Let's now create an instance of the ScoreObject in the Init() function:

orxObject_CreateFromConfig("ScoreObject");

So far, the Init() function should look like this:

2025/04/02 16:57 (0 seconds ago) 23/29 How to write a 2D UFO game

Orx Learning - https://orx-project.org/wiki/

orxSTATUS orxFASTCALL Init()
{
 orxVIEWPORT *viewport = orxViewport_CreateFromConfig("Viewport");
 camera = orxViewport_GetCamera(viewport);

 orxObject_CreateFromConfig("BackgroundObject");
 ufo = orxObject_CreateFromConfig("UfoObject");

 orxObject_CreateFromConfig("PickupObjects");

 orxObject_CreateFromConfig("ScoreObject");

 orxClock_Register(orxClock_FindFirst(orx2F(-1.0f), orxCLOCK_TYPE_CORE),
Update, orxNULL, orxMODULE_ID_MAIN, orxCLOCK_PRIORITY_NORMAL);
 orxEvent_AddHandler(orxEVENT_TYPE_PHYSICS, PhysicsEventHandler);

 return orxSTATUS_SUCCESS;
}

Compile and run.

There should be a score object in the top left hand corner displaying: 10000

The score is pretty small. And it's fixed into the top left corner of the playfield. That's not really what
we want.

A score is an example of a User Interface (UI) element. It should be fixed in the same place on the
screen. Not move around when the screen scrolls.

The score should in fact, be fixed as a child to the Camera. So that wherever the Camera goes, the
score object goes with it.

This can be achieved with the ParentCamera property, and then setting the position of the score
relative to the camera's centre position:

[ScoreObject]
Graphic = ScoreTextGraphic
Position = (-380, -280, 0)
ParentCamera = Camera
UseParentSpace = false

With these changes, we've stated that we want the Camera to be the parent of the ScoreObject. In
other words, we want the ScoreObject to travel with the Camera and appear to be fixed on the
screen.

By saying that we don't want to UseParentSpace means that we want specify relative world
coordinates from the centre of the camera. If we said yes, we'd have to specify coordinates in another
system.

And Position, of course, is the position relative to the center of the camera. In our case, moved to
the top left corner position.

Last update: 2018/02/14 00:47 (7 years ago) en:guides:ufo:main https://orx-project.org/wiki/en/guides/ufo/main?rev=1518583674

https://orx-project.org/wiki/ Printed on 2025/04/02 16:57 (0 seconds ago)

Re-run and you'll see the score in much the same position as before, but when you move the ufo
around, and the screen scrolls, the score object remains fixed in the same place.

The only thing, it's still a little small. We can double its size using Scale:

[ScoreObject]
Graphic = ScoreTextGraphic
Position = (-380, -280, 0)
ParentCamera = Camera
UseParentSpace = false
Scale = 2.0

Re-run. That looks a lot better.

To actually make use of the score object, we will need a variable in code of type int to keep track of
the score.

Every clock cycle, we'll take that value and change the text on the ScoreObject.

That is another cool feature of Orx text objects. The text can be changed any time, and the object will
re-render.

Finally, when the ufo collides with the pickup, and the pickup is destroyed, the score variable will be
increased. The clock will pick up the variable value and set the score object.

Begin by creating a score variable at the very top of the code:

#include "orx.h"
orxOBJECT *ufo;
orxCAMERA *camera;
int score = 0;

Change the comparison code inside the PhysicsEventHandler function to increase the score by
150 points every time a pickup is collected:

if (orxString_SearchString(recipientName, "PickupObject") != orxNULL) {
 orxObject_SetLifeTime(pstRecipientObject, 0);
 orxObject_AddSound(pstSenderObject, "PickupSound");
 score += 150;
}

if (orxString_SearchString(senderName, "PickupObject") != orxNULL) {
 orxObject_SetLifeTime(pstSenderObject, 0);
 orxObject_AddSound(pstRecipientObject, "PickupSound");
 score += 150;
}

Now we need a way to change the text of the score object. We declared the score object in the Init()
function as:

orxObject_CreateFromConfig("ScoreObject");

2025/04/02 16:57 (0 seconds ago) 25/29 How to write a 2D UFO game

Orx Learning - https://orx-project.org/wiki/

But we really need to create it using an orxOBJECT variable:

scoreObject = orxObject_CreateFromConfig("ScoreObject");

And then declare the scoreObject at the top of the file:

#include "orx.h"
orxOBJECT *ufo;
orxCAMERA *camera;
orxOBJECT *scoreObject;
int score = 0;

Now it is possible to update the score object using our score variable. At the bottom of the Update()
function, add the following code:

if (scoreObject) {
 orxCHAR formattedScore[5];
 orxString_Print(formattedScore, "%d", score);

 orxObject_SetTextString(scoreObject, formattedScore);
}

First, the block will only execute if there is a valid scoreObject.

If so, then create a 5 character string. Then print into the string with the score value, effectively
converting an int into a string.

Finally set the score text to the scoreObject using the orxObject_SetTextString function.

Compile and Run.

Move the ufo around and collect the pickups to increase the score 150 points at a time.

Winning the game

1200 is the maximum amount of points that can be awarded, and that is what will make us win the
game.

If we do win, we want a text label to appear above the ufo, saying “You win!”.

Like the score object, we need to define a YouWinObject:

[YouWinObject]
Graphic = YouWinTextGraphic
Position = (0, -60, 0.0)
Scale = 2.0

Just like the camera, the YouWinObject is going to be parented to the ufo too. This will give the
appearance that the YouWinObject is part of the ufo.

Last update: 2018/02/14 00:47 (7 years ago) en:guides:ufo:main https://orx-project.org/wiki/en/guides/ufo/main?rev=1518583674

https://orx-project.org/wiki/ Printed on 2025/04/02 16:57 (0 seconds ago)

The Scale is set to x2.

The Position is set offset up in the y axis so that it appears above the ufo.

Next, the actual YouWinTextGraphic:

[YouWinTextGraphic]
Text = YouWinText
Pivot = center

And the text to render into the YouWinTextGraphic:

[YouWinText]
String = You Win!

We'll test it by creating an instance of the YouWinObject, putting it into a variable, and then parent
it to the ufo in the Init() function:

orxObject_CreateFromConfig("PickupObjects");
scoreObject = orxObject_CreateFromConfig("ScoreObject");

ufoYouWinTextObject = orxObject_CreateFromConfig("YouWinObject");
orxObject_SetParent(ufoYouWinTextObject, ufo);

Then the variable:

#include "orx.h"
orxOBJECT *ufo;
orxCAMERA *camera;
orxOBJECT *ufoYouWinTextObject;
orxOBJECT *scoreObject;
int score = 0;

Compile and Run.

The “You win” text should appear above the ufo. Not bad, but the text it rotating with the ufo much
like the camera did. We can ignore the rotation from the parent on this object too:

[YouWinObject]
Graphic = YouWinTextGraphic
Position = (0, -60, 0.0)
Scale = 2.0
IgnoreFromParent = rotation

Re-run. Interesting. It certainly isn't rotating with the ufo, but its position is still being taken from the
ufo's rotation. We need to ignore this as well:

[YouWinObject]
Graphic = YouWinTextGraphic
Position = (0, -60, 0.0)
Scale = 2.0

2025/04/02 16:57 (0 seconds ago) 27/29 How to write a 2D UFO game

Orx Learning - https://orx-project.org/wiki/

IgnoreFromParent = position.rotation rotation

Good that's working right.

We want the “You Win!” to appear once all pickups are collected.

The YouWinObject object on created on the screen when the game starts. But we don't want it to
appear yet. Only when we win. Therefore, we need to disable the object immediately after it is
created:

orxObject_Enable(ufoYouWinTextObject, orxFALSE);

Finally, all that is left to do is add a small check in the PhysicsEventHandler function to test the
current score after each pickup collision:

if (orxString_SearchString(recipientName, "PickupObject") != orxNULL) {
 orxObject_SetLifeTime(pstRecipientObject, 0);
 orxObject_AddSound(pstSenderObject, "PickupSound");
 score += 150;
}

if (orxString_SearchString(senderName, "PickupObject") != orxNULL) {
 orxObject_SetLifeTime(pstSenderObject, 0);
 orxObject_AddSound(pstRecipientObject, "PickupSound");
 score += 150;
}

if (orxObject_IsEnabled(ufoYouWinTextObject) == orxFALSE && score == 1200) {
 orxObject_Enable(ufoYouWinTextObject, orxTRUE);
}

We are checking two things: that the ufoYouWinTextObject is not yet enabled, and if the score is
1200.

If both conditions are met, enable the ufoYouWinTextObject.

Compile and run.

Move the ufo around and collect all the pickups. When all are picked up and 1200 is reached, the “You
Win!” text should appear above the ufo signifying that the game is over and we have won.

And that brings us to the end! We have created a simple and complete game with some configuration
and minimal code.

Congratulations!

I hope you enjoyed working through making the ufo game. Of course, there are many little extras you
can add to give your game that little extra polish. So there a couple more chapters that you can follow
along with if you wish.

Last update: 2018/02/14 00:47 (7 years ago) en:guides:ufo:main https://orx-project.org/wiki/en/guides/ufo/main?rev=1518583674

https://orx-project.org/wiki/ Printed on 2025/04/02 16:57 (0 seconds ago)

Shadows

There are many ways to do shadows. One method is to use shaders… though this method is a little
beyond this simple guide.

Another method, when making your graphics, would be to add an alpha shadow underneath. This is a
good method if your object does not need to rotate or flip.

The method I will show you in this chapter is to have a separate shadow object as a child of an object.
And in order to remain independent of rotations is to ignore them from the parent.

First a shadow graphic for the ufo, and one for the pickups:

Save these both into the /data/objects folder.

Then create config for the ufo shadow:

[UfoShadowGraphic]
Texture = ufo-shadow.png
Alpha = 0.3
Pivot = center

The only interesting part is the Alpha property. 0.1 would be almost completely see-through (or
transparent), and 1.0 is not see-through at all, which is the regular default value for a graphic. 0.3 is
fairly see-through.

[UfoShadowObject]
Graphic = UfoShadowGraphic
Position = (20, 20, 0.05)

Set the Position a bit to the right, and down.

Next, add the UfoShadowObject as a child of the UfoObject:

[UfoObject]
Graphic = UfoGraphic
Position = (0,0, -0.1)
Body = UfoBody
AngularVelocity = 200
Smoothing = true
UseParentSpace = position
SoundList = AppearSound
ChildList = UfoShadowObject

Run the project.

The shadow child is sitting properly behind the ufo but it rotates around the ufo, which is not right.
We'll need to ignore the rotation from the parent:

https://orx-project.org/wiki/_detail/guides/ufo/ufo-shadow.png?id=en%3Aguides%3Aufo%3Amain
https://orx-project.org/wiki/_detail/guides/ufo/pickup-shadow.png?id=en%3Aguides%3Aufo%3Amain

2025/04/02 16:57 (0 seconds ago) 29/29 How to write a 2D UFO game

Orx Learning - https://orx-project.org/wiki/

[UfoShadowObject]
Graphic = UfoShadowGraphic
Position = (20, 20, 0.05)
IgnoreFromParent = position.rotation rotation

Not only do we need to ignore the rotation of ufo, we also need to ignore the rotation position of the
ufo.

Re-run and the shadow sits nice and stable to the bottom right of the ufo.

Now to do the same with the pickup shadow:

[PickupShadowGraphic]
Texture = pickup-shadow.png
Alpha = 0.3
Pivot = center

[PickupShadowObject]
Graphic = PickupShadowGraphic
Position = (20, 20, 0.05)
IgnoreFromParent = position.rotation

The only difference between this object and the ufo shadow, is that we want the pickup shadow to
take the rotation value from the parent. But we do not want to take the position rotation.

That way, the pickup shadow will remain in the bottom right of the pickup, but will rotate nicely in
place.

Now attach as a child to the pickup object:

[PickupObject]
Graphic = PickupGraphic
FXList = RotateFX
Smoothing = true
Body = PickupBody
ChildList = PickupShadowObject

Re-run, and the shadows should all be working correctly.

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/en/guides/ufo/main?rev=1518583674

Last update: 2018/02/14 00:47 (7 years ago)

https://orx-project.org/wiki/
https://orx-project.org/wiki/en/guides/ufo/main?rev=1518583674

	Introduction
	1. Introduction to the 2D UFO Project
	What is config?
	The code template

	2. Setting up the game assets
	Setting up the Playfield
	Controlling the UFO
	Physics
	Following the ufo with the camera
	Creating Pickup Objects
	Picking up the collectable objects
	Sounds
	Adding a score
	Winning the game
	Shadows

