
2025/11/14 02:04 (0 seconds ago) 1/4 orxSHADER structure

Orx Learning - https://orx-project.org/wiki/

orxSHADER structure

Shader module. Allows the definition of shader information (code + parameters).

Summary

[ShaderTemplate]
Code = "// Shader code
 void main()
 {
 // Do stuff
 }"
CodeList = CodeKey1 # ... # CodeKeyN
ParamList = Param1 # ... # ParamN
ParamFloat = <float>
ParamVector = <vector>
ParamTexture = path/to/texture
UseCustomParam = <bool>
KeepInCache = <bool>

Details

Here's a list of the available properties for an orxSHADER structure:

Code: Used to declare a monolithic shader. Will be ignored if CodeList is defined. This block 1)

contains the code that will be executed. It needs to be provided and be valid GLSL fragment
shader code.
CodeList: The values of this list will be used as config keys from this section to reconstruct, in
the given order, a multi-part shader. If not defined, Code will be used instead.
KeepInCache: Defines if the shader code should be kept in memory even if no shader of this
type is currently in use. This saves time (reading from disk + compiling) but costs memory. Its
default value is false.
ParamList: Define all the parameters your shader code needs. Defined params then must have
a default value to guess their type: textures, vectors and floats are supported. If none is
provided, type defaults to texture and will use shader's owner texture as value. If an invalid
path is provided for a parameter, or the parameter isn't defined at all, the owner's texture will
be used 2). If an explicit list is provided for any parameter, the shader variable will be
an array of this parameter type (instead of a regular variable) and its size will be the
number of items in the list.
UseCustomParam: When set to true, an event will be sent to override params values at
runtime as well as the automated “time” value. Defaults to false, ie. no runtime override unless
“time” is used for a float param.

Here's a simple example of a non-interactive shader as seen in the spawner/shader tutorial.

[Decompose]
Code = "void main()

https://en.wikipedia.org/wiki/glsl
https://en.wikipedia.org/wiki/glsl
https://orx-project.org/wiki/en/tutorials/spawners/spawner

Last update: 2025/09/30
17:26 (6 weeks ago) en:orx:config:settings_structure:orxshader https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader

https://orx-project.org/wiki/ Printed on 2025/11/14 02:04 (0 seconds ago)

{
 float fRed, fGreen, fBlue;

 // Computes positions with offsets
 vec2 vRedPos = vec2(gl_TexCoord[0].x + offset.x, gl_TexCoord[0].y +
offset.y);
 vec2 vGreenPos = vec2(gl_TexCoord[0].x, gl_TexCoord[0].y);
 vec2 vBluePos = vec2(gl_TexCoord[0].x - offset.x, gl_TexCoord[0].y -
offset.y);

 // Red pixel inside texture?
 if((vRedPos.x >= 0.0) && (vRedPos.x <= 1.0) && (vRedPos.y >= 0.0) &&
(vRedPos.y <= 1.0))
 {
 // Gets its value
 fRed = texture2D(texture, vRedPos).r;
 }

 // Green pixel inside texture?
 if((vGreenPos.x >= 0.0) && (vGreenPos.x <= 1.0) && (vGreenPos.y >= 0.0) &&
(vGreenPos.y <= 1.0))
 {
 // Gets its value
 fGreen = texture2D(texture, vGreenPos).g;
 }

 // Blue pixel inside texture?
 if((vBluePos.x >= 0.0) && (vBluePos.x <= 1.0) && (vBluePos.y >= 0.0) &&
(vBluePos.y <= 1.0))
 {
 // Gets its value
 fBlue = texture2D(texture, vBluePos).b;
 }

 // Outputs the final decomposed pixel
 gl_FragColor = vec4(fRed, fGreen, fBlue, 1.0);
}"
ParamList = texture # offset
offset = (-0.05, -0.05, 0.0) ~ (0.05, 0.05, 0.0); <= Let's take some
random offset

Please see the Shader Tutorials and Shader Examples for more information.

Overriding Parameters at Runtime with UseCustomParam

Shader parameters can be defined on the fly if

UseCustomParam = true

https://orx-project.org/wiki/en/tutorials/main#spawners
https://orx-project.org/wiki/en/examples/shaders/main

2025/11/14 02:04 (0 seconds ago) 3/4 orxSHADER structure

Orx Learning - https://orx-project.org/wiki/

is set in your shader. An event of type orxEVENT_TYPE_SHADER and ID
orxSHADER_EVENT_SET_PARAM will be fired for all parameters and its payload will contain the name
of the param and its default value. Event handler can then modify that value if need be, and it'll get
used by the shader.

However, when UseCustomParam is defined to true, those objects can't be batched at rendering,
making the rendering phase more expensive. The severity of the processing penalty depends on how
many affected objects are displayed. See the test/playground code, orxBounce, for an example on
how to set those shader parameters on the fly.

Shader Execution Environment

Using built-in 'time' keyword as parameter argument

“time” is a keyword recognized by orx: the parameter value will be the object's “age”, in seconds.
Example:

ParamList = fTime
fTime = time

Using the internal 'pixel' texture

There is an internal texture called pixel. It can be used to specify an image of arbitrary size when
used with the Scale property of the object:

[Object]
Graphic = MyTexture
Scale = (16, 16, 1)

[MyTexture]
Texture = pixel

In the example above, an Object has a Graphic that will span over 16×16 pixels.

Coordinate System

Shaders contain implicit parameters containing owner's texture coordinates. For example:

[GameObject]
Graphic = @
Texture = ObjectTexture.png
TextureOrigin = (16, 16, 0)
TextureSize = (8, 8, 0)
ShaderList = Shader

[Shader]

Last update: 2025/09/30
17:26 (6 weeks ago) en:orx:config:settings_structure:orxshader https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader

https://orx-project.org/wiki/ Printed on 2025/11/14 02:04 (0 seconds ago)

ParamList = MyTexture # ...
Code = ...

Then orx will generate extra parameters behind the scene regarding the texture MyTexture. The
names follow the pattern:

<NameOfTexture>_top, <NameOfTexture>_left,
<NameOfTexture>_bottom, <NameOfTexture>_right

In the above example, the names will then be:

MyTexture_top, MyTexture_left, MyTexture_bottom, MyTexture_right

If MyTexture's dimensions are 32×32, we'd then get:

MyTexture_top = 16 / 32 => 0.5
MyTexture_left = 16 / 32 => 0.5
MyTexture_bottom = (16 + 8) / 32 => 0.75
MyTexture_right = (16 + 8) / 32 => 0.75

Latest config settings for the Development Version

We endeavor to keep the config properties on this page up to date as often as possible. For up to the
minute config information for the latest version of Orx, check the most recent published at:

CreationTemplate.ini and

SettingsTemplate.ini

Additionally these files can be found under your orx source tree in the orx/code/bin folder.

1)

delimited by double quotes (“) as seen in the syntax page
2)

if the owner is a viewport, it will be its associated texture; if it's an object, it's current
graphic/animation key's texture will be used

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader

Last update: 2025/09/30 17:26 (6 weeks ago)

https://github.com/orx/orx/blob/master/code/bin/CreationTemplate.ini
https://github.com/orx/orx/blob/master/code/bin/SettingsTemplate.ini
https://orx-project.org/wiki/en/orx/config/syntax
https://orx-project.org/wiki/
https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader

	[orxSHADER structure]
	orxSHADER structure
	Summary
	Details
	Overriding Parameters at Runtime with UseCustomParam

	Shader Execution Environment
	Using built-in 'time' keyword as parameter argument
	Using the internal 'pixel' texture
	Coordinate System

	Latest config settings for the Development Version

