2026/01/11 09:23 (0 seconds ago) 1/2 orxSHADER structure

orxSHADER structure

Summary

ShaderTemplate
Code "// Shader code
void main()

{
// Do stuff
3
KeepInCache <bool>
ParamList ParamFloat#ParamTexture#ParamVector
ParamFloat <float>
ParamVector <vector>
ParamTexture path/to/TextureFile|screen

UseCustomParam <bool>
Details

Here's a list of the available properties for an orxSHADER structure:

« Code: This block * contains the code that will be executed. It needs to be provided and be valid
@ GLSL fragment shader code.

* KeepInCache: Defines if the shader code should be kept in memory even if no shader of this
type is currently in use. This saves time (reading from disk + compiling) but costs memory. Its
default value is false.

e ParamlList: This defines the list of parameters needed and used by the shader's code. Every
defined parameter must have a default value that will help orx guess their type. If none is
provided, then its type will be assumed to be a texture. Available types are <float>, <vector>
and texture (if a path to a texture file or the keyword screen is provided). If an invalid path is
provided for a parameter, or the parameter isn't defined at all, the owner's texture will be used
2)

e UseCustomParam: Defines if parameters can have their value overridden at runtime (ie.
interactive). Its default value is false which means only the default values will be used.

Here's a simple example of a non-interactive shader as seen in the spawner/shader tutorial.

Decompose
Code "void main()

{
float fRed, fGreen, fBlue;

// Computes positions with offsets

vec2 vRedPos = vec2(gl TexCoord[0].x + offset.x, gl TexCoord[0].y +
offset.y);

vec2 vGreenPos

vec2 vBluePos
offset.y);

vec2(gl TexCoord[0].x, gl TexCoord[0].y);
vec2(gl TexCoord[0].x - offset.x, gl TexCoord[O].y -

Orx Learning - https://orx-project.org/wiki/


https://en.wikipedia.org/wiki/glsl
https://en.wikipedia.org/wiki/glsl
https://orx-project.org/wiki/en/orx/tutorials/spawner

Last
update:
2025/09/30
17:26 (3
months
ago)

en:orx:config:settings_structure:orxshader https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader?rev=1278636279

// Red pixel inside texture?
if((vRedPos.x >= 0.0) && (vRedPos.x <= 1.0) && (vRedPos.y >= 0.0) &&
(vRedPos.y <= 1.0))
{
// Gets its value
fRed = texture2D(texture, vRedPos).r;

}

// Green pixel inside texture?
if((vGreenPos.x >= 0.0) && (vGreenPos.x <= 1.0) && (vGreenPos.y >= 0.0) &&
(vGreenPos.y <= 1.0))
{
// Gets its value
fGreen = texture2D(texture, vGreenPos).g;

}

// Blue pixel inside texture?
if((vBluePos.x >= 0.0) && (vBluePos.x <= 1.0) && (vBluePos.y >= 0.0) &&
(vBluePos.y <= 1.0))
{
// Gets its value
fBlue = texture2D(texture, vBluePos).b;

}

// Outputs the final decomposed pixel
gl FragColor = vec4(fRed, fGreen, fBlue, 1.0);

}II
ParamList texture#offset
offset -0.05, -0.05, 0.0) ~ (0.05, 0.05, 0.0); <= Let's take some

random offset

Please see the spawner/shader tutorial for more information.

1)

delimited by double quotes (“) as seen in the syntax page
2)

if the owner is a viewport, it will be its associated texture; if it's an object, it's current
graphic/animation key's texture will be used

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:

Last update: 2025/09/30 17:26 (3 months ago)

https://orx-project.org/wiki/ Printed on 2026/01/11 09:23 (0 seconds ago)


https://orx-project.org/wiki/en/orx/tutorials/spawner
https://orx-project.org/wiki/en/orx/config/syntax
https://orx-project.org/wiki/
https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader?rev=1278636279

	[orxSHADER structure]
	orxSHADER structure
	Summary
	Details



