
2026/01/11 09:23 (0 seconds ago) 1/2 orxSHADER structure

Orx Learning - https://orx-project.org/wiki/

orxSHADER structure

Summary

[ShaderTemplate]
Code = "// Shader code
  void main()
  {
   // Do stuff
  }"
KeepInCache    = <bool>
ParamList      = ParamFloat # ParamTexture # ParamVector
ParamFloat     = <float>
ParamVector    = <vector>
ParamTexture   = path/to/TextureFile|screen
UseCustomParam = <bool>

Details

Here's a list of the available properties for an orxSHADER structure:

Code: This block 1) contains the code that will be executed. It needs to be provided and be valid
GLSL fragment shader code.

KeepInCache: Defines if the shader code should be kept in memory even if no shader of this
type is currently in use. This saves time (reading from disk + compiling) but costs memory. Its
default value is false.
ParamList: This defines the list of parameters needed and used by the shader's code. Every
defined parameter must have a default value that will help orx guess their type. If none is
provided, then its type will be assumed to be a texture. Available types are <float>, <vector>
and texture (if a path to a texture file or the keyword screen is provided). If an invalid path is
provided for a parameter, or the parameter isn't defined at all, the owner's texture will be used
2).
UseCustomParam: Defines if parameters can have their value overridden at runtime (ie.
interactive). Its default value is false which means only the default values will be used.

Here's a simple example of a non-interactive shader as seen in the spawner/shader tutorial.

[Decompose]
Code = "void main()
{
  float fRed, fGreen, fBlue;
 
  // Computes positions with offsets
  vec2 vRedPos    = vec2(gl_TexCoord[0].x + offset.x, gl_TexCoord[0].y +
offset.y);
  vec2 vGreenPos  = vec2(gl_TexCoord[0].x, gl_TexCoord[0].y);
  vec2 vBluePos   = vec2(gl_TexCoord[0].x - offset.x, gl_TexCoord[0].y -
offset.y);

https://en.wikipedia.org/wiki/glsl
https://en.wikipedia.org/wiki/glsl
https://orx-project.org/wiki/en/orx/tutorials/spawner


Last
update:
2025/09/30
17:26 (3
months
ago)

en:orx:config:settings_structure:orxshader https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader?rev=1305532139

https://orx-project.org/wiki/ Printed on 2026/01/11 09:23 (0 seconds ago)

 
  // Red pixel inside texture?
  if((vRedPos.x >= 0.0) && (vRedPos.x <= 1.0) && (vRedPos.y >= 0.0) &&
(vRedPos.y <= 1.0))
  {
    // Gets its value
    fRed = texture2D(texture, vRedPos).r;
  }
 
  // Green  pixel inside texture?
  if((vGreenPos.x >= 0.0) && (vGreenPos.x <= 1.0) && (vGreenPos.y >= 0.0) &&
(vGreenPos.y <= 1.0))
  {
    // Gets its value
    fGreen = texture2D(texture, vGreenPos).g;
  }
 
  // Blue pixel inside texture?
  if((vBluePos.x >= 0.0) && (vBluePos.x <= 1.0) && (vBluePos.y >= 0.0) &&
(vBluePos.y <= 1.0))
  {
    // Gets its value
    fBlue = texture2D(texture, vBluePos).b;
  }
 
  // Outputs the final decomposed pixel
  gl_FragColor = vec4(fRed, fGreen, fBlue, 1.0);
}"
ParamList = texture#offset
offset    = (-0.05, -0.05, 0.0) ~ (0.05, 0.05, 0.0); <= Let's take some
random offset

Please see the spawner/shader tutorial for more information.

1)

delimited by double quotes (“) as seen in the syntax page
2)

if the owner is a viewport, it will be its associated texture; if it's an object, it's current
graphic/animation key's texture will be used

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader?rev=1305532139

Last update: 2025/09/30 17:26 (3 months ago)

https://orx-project.org/wiki/en/orx/tutorials/spawner
https://orx-project.org/wiki/en/orx/config/syntax
https://orx-project.org/wiki/
https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader?rev=1305532139

	[orxSHADER structure]
	orxSHADER structure
	Summary
	Details



