2026/01/11 09:23 (0 seconds ago) 1/3 orxSHADER structure

orxSHADER structure

Summary

ShaderTemplate
Code "// Shader code
void main()

{
// Do stuff
3
KeepInCache <bool>
ParamList ParamFloat # ParamTexture # ParamVector
ParamFloat <float>
ParamVector <vector>
ParamTexture path/to/TextureFile|screen

UseCustomParam <bool>

Details

Here's a list of the available properties for an orxSHADER structure:

« Code: This block * contains the code that will be executed. It needs to be provided and be valid
@ GLSL fragment shader code.

* KeepInCache: Defines if the shader code should be kept in memory even if no shader of this
type is currently in use. This saves time (reading from disk + compiling) but costs memory. Its
default value is false

e ParamlList: This defines the list of parameters needed and used by the shader's code. Every
defined parameter must have a default value that will help orx guess their type. If none is
provided, then its type will be assumed to be a texture. Available types are <float>, <vector>
and texture (if a path to a texture file or the keyword screen is provided). If an invalid path is
provided for a parameter, or the parameter isn't defined at all, the owner's texture will be used
2. If an explicit list is provided for any parameter, the shader variable will be an array
of this parameter type (instead of a regular variable) and its size will be the number
of items in the list.

e UseCustomParam: Defines if parameters can have their value overridden at runtime (ie.
interactive). Its default value is false which means only the default values will be used.

Here's a simple example of a non-interactive shader as seen in the spawner/shader tutorial.

Decompose
Code "void main()

{
float fRed, fGreen, fBlue;

// Computes positions with offsets

vec2 vRedPos = vec2(gl TexCoord[0].x + offset.x, gl TexCoord[0O].y +
offset.y);

vec2 vGreenPos = vec2(gl TexCoord[0].x, gl TexCoord[0].y);

Orx Learning - https://orx-project.org/wiki/


https://en.wikipedia.org/wiki/glsl
https://en.wikipedia.org/wiki/glsl
https://orx-project.org/wiki/en/orx/tutorials/spawner

Last
update:

i2.2256/0(g/30 en:orx:config:settings_structure:orxshader https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader?rev=1305532277
months
ago)

vec2 vBluePos = vec2(gl TexCoord[0].x - offset.x, gl TexCoord[0O].y -
offset.y);

// Red pixel inside texture?
if((vRedPos.x >= 0.0) && (vRedPos.x <= 1.0) && (vRedPos.y >= 0.0) &&
(vRedPos.y <= 1.0))
{
// Gets its value
fRed = texture2D(texture, vRedPos).r;

}

// Green pixel inside texture?
if((vGreenPos.x >= 0.0) && (vGreenPos.x <= 1.0) && (vGreenPos.y >= 0.0) &&
(vGreenPos.y <= 1.0))

{
// Gets its value

fGreen = texture2D(texture, vGreenPos).g;

}

// Blue pixel inside texture?
if((vBluePos.x >= 0.0) && (vBluePos.x <= 1.0) && (vBluePos.y >= 0.0) &&
(vBluePos.y <= 1.0))
{
// Gets its value
fBlue = texture2D(texture, vBluePos).b;

}

// Outputs the final decomposed pixel
gl FragColor = vec4(fRed, fGreen, fBlue, 1.0);

}II
ParamList texture # offset
offset -0.05, -0.05, 0.0) ~ (0.05, 0.05, 0.0); <= Let's take some

random offset

Please see the spawner/shader tutorial for more information.

1)

delimited by double quotes (“) as seen in the syntax page
2)

if the owner is a viewport, it will be its associated texture; if it's an object, it's current
graphic/animation key's texture will be used

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader?rev=1305532277

Last update: 2025/09/30 17:26 (3 months ago)

https://orx-project.org/wiki/ Printed on 2026/01/11 09:23 (0 seconds ago)


https://orx-project.org/wiki/en/orx/tutorials/spawner
https://orx-project.org/wiki/en/orx/config/syntax
https://orx-project.org/wiki/
https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader?rev=1305532277

2026/01/11 09:23 (0 seconds ago) 3/3 orxSHADER structure

Orx Learning - https://orx-project.org/wiki/



	[orxSHADER structure]
	orxSHADER structure
	Summary
	Details



