2026/01/11 09:23 (0 seconds ago) 1/4 orxSHADER structure

orxSHADER structure

Shader module. Allows the definition of shader information (code + parameters).

Summary

ShaderTemplate
Code "// Shader code
void main()

{
// Do stuff
3
KeepInCache <bool>
ParamList ParamFloat # ParamTexture # ParamVector
ParamFloat <float>
ParamVector <vector>
ParamTexture path/to/TextureFile|screen

UseCustomParam <bool>

Details

Here's a list of the available properties for an orxSHADER structure:

« Code: This block ! contains the code that will be executed. It needs to be provided and be valid
@ GLSL fragment shader code.

e KeepInCache: Defines if the shader code should be kept in memory even if no shader of this
type is currently in use. This saves time (reading from disk + compiling) but costs memory. Its
default value is false

e ParamList: This defines the list of parameters needed and used by the shader's code. Every
defined parameter must have a default value that will help orx guess their type. If none is
provided, then its type will be assumed to be a texture. Available types are <float>, <vector>
and texture (if a path to a texture file or the keyword screen is provided). If an invalid path is
provided for a parameter, or the parameter isn't defined at all, the owner's texture will be used
2, If an explicit list is provided for any parameter, the shader variable will be an array
of this parameter type (instead of a regular variable) and its size will be the number
of items in the list.

e UseCustomParam: Defines if parameters can have their value overridden at runtime (ie.
interactive). Its default value is false which means only the default values will be used.

Here's a simple example of a non-interactive shader as seen in the spawner/shader tutorial.

Decompose
Code "void main()

{
float fRed, fGreen, fBlue;

// Computes positions with offsets

Orx Learning - https://orx-project.org/wiki/


https://en.wikipedia.org/wiki/glsl
https://en.wikipedia.org/wiki/glsl
https://orx-project.org/wiki/en/tutorials/spawner

Last

update:

2025/09/30 _ . . o . . . s ) . .

17:26 (3 en:orx:config:settings_structure:orxshader https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader?rev=1596805699
months

ago)

vec2 vRedPos
offset.y);

vec2 vGreenPos

vec2 vBluePos
offset.y);

vec2(gl TexCoord[0].x + offset.x, gl TexCoord[0].y +

vec2(gl TexCoord[0].x, gl TexCoord[0].y);
vec2(gl TexCoord[0].x - offset.x, gl TexCoord[O].y -

// Red pixel inside texture?
if((vRedPos.x >= 0.0) && (vRedPos.x <= 1.0) && (vRedPos.y >= 0.0) &&
(vRedPos.y <= 1.0))
{
// Gets its value
fRed = texture2D(texture, vRedPos).r;
}

// Green pixel inside texture?
if((vGreenPos.x >= 0.0) && (vGreenPos.x <= 1.0) && (vGreenPos.y >= 0.0) &&
(vGreenPos.y <= 1.0))
{
// Gets its value
fGreen = texture2D(texture, vGreenPos).g;

}

// Blue pixel inside texture?
if((vBluePos.x >= 0.0) && (vBluePos.x <= 1.0) && (vBluePos.y >= 0.0) &&
(vBluePos.y <= 1.0))
{
// Gets its value
fBlue = texture2D(texture, vBluePos).b;
}

// Outputs the final decomposed pixel
gl FragColor = vec4(fRed, fGreen, fBlue, 1.0);

}II
ParamList texture # offset
offset -0.05, -0.05, 0.0) ~ (0.05, 0.05, 0.0); <= Let's take some

random offset

Please see the Shader Tutorials and Shader Examples for more information.

Overriding Parameters at Runtime with UseCustomParam

Shader parameters can be defined on the fly if
UseCustomParam = true

is set in your shader. An event of type orxEVENT TYPE_SHADER and ID

https://orx-project.org/wiki/ Printed on 2026/01/11 09:23 (0 seconds ago)


https://orx-project.org/wiki/en/tutorials/main#spawners
https://orx-project.org/wiki/en/examples/shaders/main

2026/01/11 09:23 (0 seconds ago) 3/4 orxSHADER structure

orxSHADER EVENT SET PARAM will be fired for all parameters and its payload will contain the name
of the param and its default value. Event handler can then modify that value if need be, and it'll get
used by the shader.

However, when UseCustomParam is defined to true, those objects can't be batched at rendering,
making the rendering phase more expensive. The severity of the processing penalty depends on how
many affected objects are displayed. See the test/playground code, orxBounce, for an example on
how to set those shader parameters on the fly.

Shader Execution Environment

Using built-in 'time' keyword as parameter argument

“time” is a keyword recognized by orx: the parameter value will be the object's “age”, in seconds.
Example:

ParamList fTime
fTime time

Using the internal 'pixel' texture

There is an internal texture called pixel. It can be used to specify an image of arbitrary size when
used with the Scale property of the object:

Object
Graphic = MyTexture
Scale 16, 16, 1

MyTexture
Texture pixel

In the example above, an Object has a Graphic that will span over 16x16 pixels.

Coordinate System

Shaders contain implicit parameters containing owner's texture coordinates. For example:

GameObject

Graphic @
Texture ObjectTexture.png
TextureOrigin 16, 16, O
TextureSize 8, 8, 0
ShaderList Shader

Shader
ParamList MyTexture # ...

Orx Learning - https://orx-project.org/wiki/



Last
update:
2025/09/30
17:26 (3
months
ago)

Code

en:orx:config:settings_structure:orxshader https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader?rev=1596805699

Then orx will generate extra parameters behind the scene regarding the texture MyTexture. The
names follow the pattern:

<NameOfTexture> top, <NameOfTexture> left,
<NameOfTexture> bottom, <NameOfTexture> right

In the above example, the names will then be:
MyTexture top, MyTexture left, MyTexture bottom, MyTexture right
If MyTexture's dimensions are 32x32, we'd then get:

MyTexture top = 16 / 32 => 0.5
MyTexture left = 16 / 32 => 0.5
MyTexture bottom = (16 + 8) / 32 => 0.75
MyTexture right = (16 + 8) / 32 => 0.75

Latest config settings for the Development Version

We endeavor to keep the config properties on this page up to date as often as possible. For up to the
minute config information for the latest version of Orx, check the most recent published at:

CreationTemplate.ini and
SettingsTemplate.ini

Additionally these files can be found under your orx source tree in the orx/code/bin folder.

1)

delimited by double quotes (“) as seen in the syntax page
2)

if the owner is a viewport, it will be its associated texture; if it's an object, it's current
graphic/animation key's texture will be used

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:

Last update: 2025/09/30 17:26 (3 months ago)

https://orx-project.org/wiki/ Printed on 2026/01/11 09:23 (0 seconds ago)


https://github.com/orx/orx/blob/master/code/bin/CreationTemplate.ini
https://github.com/orx/orx/blob/master/code/bin/SettingsTemplate.ini
https://orx-project.org/wiki/en/orx/config/syntax
https://orx-project.org/wiki/
https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader?rev=1596805699

	[orxSHADER structure]
	orxSHADER structure
	Summary
	Details
	Overriding Parameters at Runtime with UseCustomParam

	Shader Execution Environment
	Using built-in 'time' keyword as parameter argument
	Using the internal 'pixel' texture
	Coordinate System

	Latest config settings for the Development Version



