
2026/01/11 09:23 (0 seconds ago) 1/4 orxSHADER structure

Orx Learning - https://orx-project.org/wiki/

orxSHADER structure

Shader module. Allows the definition of shader information (code + parameters).

Summary

[ShaderTemplate]
Code = "// Shader code
 void main()
 {
 // Do stuff
 }"
KeepInCache = <bool>
ParamList = ParamFloat # ParamTexture # ParamVector
ParamFloat = <float>
ParamVector = <vector>
ParamTexture = path/to/TextureFile|screen
UseCustomParam = <bool>

Details

Here's a list of the available properties for an orxSHADER structure:

Code: This block 1) contains the code that will be executed. It needs to be provided and be valid
GLSL fragment shader code.

KeepInCache: Defines if the shader code should be kept in memory even if no shader of this
type is currently in use. This saves time (reading from disk + compiling) but costs memory. Its
default value is false.
ParamList: This defines the list of parameters needed and used by the shader's code. Every
defined parameter must have a default value that will help orx guess their type. If none is
provided, then its type will be assumed to be a texture. Available types are <float>, <vector>
and texture (if a path to a texture file or the keyword screen is provided). If an invalid path is
provided for a parameter, or the parameter isn't defined at all, the owner's texture will be used
2). If an explicit list is provided for any parameter, the shader variable will be an array
of this parameter type (instead of a regular variable) and its size will be the number
of items in the list.
UseCustomParam: Defines if parameters can have their value overridden at runtime (ie.
interactive). Its default value is false which means only the default values will be used.

Here's a simple example of a non-interactive shader as seen in the spawner/shader tutorial.

[Decompose]
Code = "void main()
{
 float fRed, fGreen, fBlue;

 // Computes positions with offsets

https://en.wikipedia.org/wiki/glsl
https://en.wikipedia.org/wiki/glsl
https://orx-project.org/wiki/en/tutorials/spawners/spawner

Last
update:
2025/09/30
17:26 (3
months
ago)

en:orx:config:settings_structure:orxshader https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader?rev=1598876045

https://orx-project.org/wiki/ Printed on 2026/01/11 09:23 (0 seconds ago)

 vec2 vRedPos = vec2(gl_TexCoord[0].x + offset.x, gl_TexCoord[0].y +
offset.y);
 vec2 vGreenPos = vec2(gl_TexCoord[0].x, gl_TexCoord[0].y);
 vec2 vBluePos = vec2(gl_TexCoord[0].x - offset.x, gl_TexCoord[0].y -
offset.y);

 // Red pixel inside texture?
 if((vRedPos.x >= 0.0) && (vRedPos.x <= 1.0) && (vRedPos.y >= 0.0) &&
(vRedPos.y <= 1.0))
 {
 // Gets its value
 fRed = texture2D(texture, vRedPos).r;
 }

 // Green pixel inside texture?
 if((vGreenPos.x >= 0.0) && (vGreenPos.x <= 1.0) && (vGreenPos.y >= 0.0) &&
(vGreenPos.y <= 1.0))
 {
 // Gets its value
 fGreen = texture2D(texture, vGreenPos).g;
 }

 // Blue pixel inside texture?
 if((vBluePos.x >= 0.0) && (vBluePos.x <= 1.0) && (vBluePos.y >= 0.0) &&
(vBluePos.y <= 1.0))
 {
 // Gets its value
 fBlue = texture2D(texture, vBluePos).b;
 }

 // Outputs the final decomposed pixel
 gl_FragColor = vec4(fRed, fGreen, fBlue, 1.0);
}"
ParamList = texture # offset
offset = (-0.05, -0.05, 0.0) ~ (0.05, 0.05, 0.0); <= Let's take some
random offset

Please see the Shader Tutorials and Shader Examples for more information.

Overriding Parameters at Runtime with UseCustomParam

Shader parameters can be defined on the fly if

UseCustomParam = true

is set in your shader. An event of type orxEVENT_TYPE_SHADER and ID

https://orx-project.org/wiki/en/tutorials/main#spawners
https://orx-project.org/wiki/en/examples/shaders/main

2026/01/11 09:23 (0 seconds ago) 3/4 orxSHADER structure

Orx Learning - https://orx-project.org/wiki/

orxSHADER_EVENT_SET_PARAM will be fired for all parameters and its payload will contain the name
of the param and its default value. Event handler can then modify that value if need be, and it'll get
used by the shader.

However, when UseCustomParam is defined to true, those objects can't be batched at rendering,
making the rendering phase more expensive. The severity of the processing penalty depends on how
many affected objects are displayed. See the test/playground code, orxBounce, for an example on
how to set those shader parameters on the fly.

Shader Execution Environment

Using built-in 'time' keyword as parameter argument

“time” is a keyword recognized by orx: the parameter value will be the object's “age”, in seconds.
Example:

ParamList = fTime
fTime = time

Using the internal 'pixel' texture

There is an internal texture called pixel. It can be used to specify an image of arbitrary size when
used with the Scale property of the object:

[Object]
Graphic = MyTexture
Scale = (16, 16, 1)

[MyTexture]
Texture = pixel

In the example above, an Object has a Graphic that will span over 16×16 pixels.

Coordinate System

Shaders contain implicit parameters containing owner's texture coordinates. For example:

[GameObject]
Graphic = @
Texture = ObjectTexture.png
TextureOrigin = (16, 16, 0)
TextureSize = (8, 8, 0)
ShaderList = Shader

[Shader]
ParamList = MyTexture # ...

Last
update:
2025/09/30
17:26 (3
months
ago)

en:orx:config:settings_structure:orxshader https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader?rev=1598876045

https://orx-project.org/wiki/ Printed on 2026/01/11 09:23 (0 seconds ago)

Code = ...

Then orx will generate extra parameters behind the scene regarding the texture MyTexture. The
names follow the pattern:

<NameOfTexture>_top, <NameOfTexture>_left,
<NameOfTexture>_bottom, <NameOfTexture>_right

In the above example, the names will then be:

MyTexture_top, MyTexture_left, MyTexture_bottom, MyTexture_right

If MyTexture's dimensions are 32×32, we'd then get:

MyTexture_top = 16 / 32 => 0.5
MyTexture_left = 16 / 32 => 0.5
MyTexture_bottom = (16 + 8) / 32 => 0.75
MyTexture_right = (16 + 8) / 32 => 0.75

Latest config settings for the Development Version

We endeavor to keep the config properties on this page up to date as often as possible. For up to the
minute config information for the latest version of Orx, check the most recent published at:

CreationTemplate.ini and

SettingsTemplate.ini

Additionally these files can be found under your orx source tree in the orx/code/bin folder.

1)

delimited by double quotes (“) as seen in the syntax page
2)

if the owner is a viewport, it will be its associated texture; if it's an object, it's current
graphic/animation key's texture will be used

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader?rev=1598876045

Last update: 2025/09/30 17:26 (3 months ago)

https://github.com/orx/orx/blob/master/code/bin/CreationTemplate.ini
https://github.com/orx/orx/blob/master/code/bin/SettingsTemplate.ini
https://orx-project.org/wiki/en/orx/config/syntax
https://orx-project.org/wiki/
https://orx-project.org/wiki/en/orx/config/settings_structure/orxshader?rev=1598876045

	[orxSHADER structure]
	orxSHADER structure
	Summary
	Details
	Overriding Parameters at Runtime with UseCustomParam

	Shader Execution Environment
	Using built-in 'time' keyword as parameter argument
	Using the internal 'pixel' texture
	Coordinate System

	Latest config settings for the Development Version

