
2025/06/27 13:15 (0 seconds ago) 1/7 Using SWIG to talk to Java on Android (and get access to the Android API)

Orx Learning - https://orx-project.org/wiki/

Using SWIG to talk to Java on Android (and
get access to the Android API)

Summary

In this tutorial, we're going to use SWIG to generate Java wrappers for our C/C++ code and through
that get access to the native Android functionalities. Even though Orx provides access to a great
many platform functionalities that are commonly required by games, there's always just a few more
things required by a game running on a device and we're going to tackle that here.

SWIG is a nice tool that generates wrappers for C/C++ code for a multitude of languages, please see
the full list of supported languages in their website. In this tutorial, SWIG will do the arduous and
error-prone task of writing JNI wrappers for us.

Getting to Know SWIG

Even though this is not a tutorial on SWIG per se, let's get familiar with it with an isolated example
first. You don't need to perform the steps in this section, since we don't need them for our stated goal
in this tutorial. Say we have a C++ class that we would like to use in another language:

MyClass.h

class MyClass {
public:
 void SayHello();
};

MyClass.cpp

#include <iostream>
#include "MyClass.h"
void MyClass::SayHello() {
 std::cout << "Hello From MyClass!" << std::endl;
}

In order to wrap this library, we need a SWIG interface definition file. SWIG's interface file syntax is a
superset of C++. On top of C++ it lets you write some directives to fine-tune the interface generation
process. For our MyClass class we're going to use the following file:

MyModule.i

http://www.swig.org/
http://www.swig.org/compat.html#SupportedLanguages
https://en.wikipedia.org/wiki/Java_Native_Interface

Last update: 2020/08/31 06:01 (5 years ago) en:tutorials:android:swig_android https://orx-project.org/wiki/en/tutorials/android/swig_android

https://orx-project.org/wiki/ Printed on 2025/06/27 13:15 (0 seconds ago)

%module MyModule
%{
#include "MyClass.h"
%}
%include "MyClass.h"

In MyModule.i, we're telling SWIG to generate a “module”(library, gem etc.) named MyModule in
the target language. We're then telling it to include our MyClass.h file in two different ways; one
with #include inside %{ and %}. This #include statement will go directly into the generated
bindings file. In fact, whatever's withing the %{ and %} braces will go verbatim to be compiled as
C/C++ code. This is needed so that the generated bindings actually include our class. The other
include is specified with %include, and that is a directive for SWIG itself and it means that SWIG
should parse MyClass.h and generate bindings for whatever it finds there.

Since this is an isolated example, let's go one step further and wrap this class for Python. Install SWIG
for your platform, and make sure that you're able to call it from a command prompt, and call the
following command in a terminal in the folder that you have the MyClass files:

swig -python -c++ MyModule.i

So, in order, we're telling swig to generate a Python module, for a C++ library using the interface
definition in MyModule.i. Here's what it generates for us:

MyModule_wrap.cxx : A C++ file that contains the bindings so that Python can call our
functions
MyModule.py : A Python module that exposes the bound C++ functions in a natural way

SWIG will generate different things for different languages, but the pattern is always the same: Some
C++ code to bind functions, some target language code to expose a natural interface for the bound
functions. In order to use the generated module, we first need to compile the generated C++ binding
file. With g++ on Linux that would look like: (If you're using another compiler/platform you'll need to
do something similar, but you don't have to follow this step in order to benefit from the tutorial, our
aim isn't Python anyway :))

 g++ MyModule_wrap.cxx MyClass.cpp -I /usr/include/python2.7/ -fPIC -shared
-o _MyModule.so

So, we're telling g++ to compile our own C++ source (MyClass.cpp) along with SWIG generated
bindings file (MyModule_wrap.cxx). -I /usr/include/python2.7 is needed so that
MyModule_wrap.cxx can find the python headers needed for the bindings. Finally, we're telling it to
generate a dynamic library (and not an executable) with the arguments -fPIC -shared named
_MyModule.so. The name of the generated library is important here, the Python generator for SWIG
needs the compiled library to be called _<ModuleName>.<Library extension of your
platform>.

Now, in the same folder, you can start a python session and issue:

import MyModule
myObject = MyModule.MyClass()
myObject.SayHello()

2025/06/27 13:15 (0 seconds ago) 3/7 Using SWIG to talk to Java on Android (and get access to the Android API)

Orx Learning - https://orx-project.org/wiki/

Output:

 Hello From MyClass!

Just for fun, if we call swig with swig -java -c++ MyModule.i swig will generate:

MyModule_wrap.cxx: as before
MyModuleJNI.java: a JNI file to expose the bindings to Java
MyModule.java: a Java class to hold the C++ functions (we don't have any, we just have
MyClass's methods.)
MyClass.java: to expose MyClass to Java

Now we would compile that with:

 g++ MyModule_wrap.cxx MyClass.cpp -I /usr/lib/jvm/java-8-oracle/include/ -I
/usr/lib/jvm/java-8-oracle/include/linux -fPIC -shared -o libMyModule.so

and happily use our new Java library. For a longer introduction to SWIG please head over to their their
starting tutorial.

Defining Our Interaction with the Platform

Now that we're experts of SWIG, we can move onto our task of interfacing Orx with the native Android
platform. We need to define such a scheme that from the point of view of Orx we'll be calling regular
C/C++ functions, but those functions will actually be executing Java code on Android, and whatever
on PC etc. Note that this is the inverse of what we have done in the previous section, we've called a
C++ method from Python. Luckily, SWIG supports communication in that direction too. The way SWIG
supports that is through allowing inheritance of C++ classes in the target Language. So, we're going
to define a Platform class in C++, expose it through SWIG, and derive from it in Java to implement
platform specific functionality. This way, we can also implement the same functionality on different
platforms and expose them through the same interface.

In this tutorial, we're going to expose the vibration functionality of the Android device to Orx. For this,
we define the following base class for the platform:

Platform.h

class Platform {
public:
 Platform(){};
 virtual ~Platform(){};
 virtual void ~Vibrate(int length_in_millisec) = 0;
};

void SetPlatform(Platform *);
Platform * GetPlatform();

http://www.swig.org/tutorial.html
http://www.swig.org/tutorial.html

Last update: 2020/08/31 06:01 (5 years ago) en:tutorials:android:swig_android https://orx-project.org/wiki/en/tutorials/android/swig_android

https://orx-project.org/wiki/ Printed on 2025/06/27 13:15 (0 seconds ago)

Platform.cpp

#include "Platform.h"
Platform * platform; // a global platform pointer
void SetPlatform(Platform * p) {
 platform = p;
}
Platform * GetPlatform() {
 return platform;
}

The most important thing in the Platform class is the Vibrate method, which will allow us to
invoke the vibration feature in our game given a platform instance. One part of the magic is how
we get a platform object. When the game is running on a PC, we'll get the platform object that
implements the functionality on PC, and on Android we'll get an instance of our SWIG generated Java-
derivable awesome class.

The way we get different Platform objects on different platforms is through the SetPlatform and
GetPlatform functions. During game initialization, a platform-specific Platform object will be
injected using the SetPlatform function, and the game will call the methods of the Platform
object obtained by calling the GetPlatform function.

We can now go ahead and implement the platform on PC, we don't need SWIG for that: (If you don't
care at all about PC, you can just ignore this)

main.cpp

#include <iostream>
#include "Platform.h"

// ... Your awesome game

class PCPlatform: public Platform {
 void Vibrate(int length) {
 std::cout << "Bzzzzzz!!! Look this idiot is trying to vibrate a PC!" <<
std::endl;
 }
};

int main(int argc, char **argv) {
#ifdef COMPILING_FOR_PC
 SetPlatform(new PCPlatform);
#endif

 orx_Execute(argc, argv, Init, Run, Exit);
}

Notice the COMPILING_FOR_PC flag we use to check if we're running on PC. You need to make sure
in your project configuration that this flag is defined while you're compiling for PC.

2025/06/27 13:15 (0 seconds ago) 5/7 Using SWIG to talk to Java on Android (and get access to the Android API)

Orx Learning - https://orx-project.org/wiki/

Now, anywhere in our game, we can just say GetPlatform()→Vibrate(1000); to invoke the
vibration feature!

Implementing AndroidPlatform

Now, we're going to expose Platform.h using SWIG, so that we can derive from Plaform in Java
and set an instance of that Java class as the Platform using SetPlatform. So, we prepare the
following SWIG interface file:

PlatformModule.i

%module(directors="1") PlatformModule
%{
#include "Platform.h"
%}

%feature("director");

%include "Platform.h"

This is similar to our first interface file, but we've added the “director” feature. This is the feature that
enables us to extend the Platform class in Java. As a side note, notice that we've called our module
PlatformModule. What you call the module is not that important, but if the name of your module
coincides with one of your classes, that causes a problem in Java, since the module itself is also
exposed as a class.

Having this interface definition file, we call SWIG as follows:

swig -java -c++ -package platform PlatformModule.i

The only difference here is the -package platform argument, which tells SWIG to generate the
Java classes with package platform. This means that we need to put them under a folder called
platform in the Java source files path. These are the files generated by SWIG with that call:

PlatformModule_wrap.cxx: The bindings file, we need to make sure that our Android.mk
compiles this
PlatformModuleJNI.java, PlatformModule.java, Platform.java: These should be
available in a platform folder on the java source path.

From this point on, I'll take the Orx android-native demo application as a reference. If your project
layout is different, please translate the instructions accordingly. In that project, you'd be putting
Platform.h, Platform.cpp and PlatformModule_wrap.cxx in the app/src/jni folder, and
PlatformModuleJNI.java, PlatformModule.java and Platform.java files in the
app/src/main/java/platform folder. (You'll need to create the platform folder yourself)

Make sure that you modify your Android.mk so that Platform.cpp and
PlatformModule_wrap.cxx both get compiled. And for the sake of this tutorial, you also need to
add the vibration permission to your app/src/main/AndroidManifest.xml with the line <uses-

https://github.com/orx/orx/blob/master/code/demo/android-native/?at=default

Last update: 2020/08/31 06:01 (5 years ago) en:tutorials:android:swig_android https://orx-project.org/wiki/en/tutorials/android/swig_android

https://orx-project.org/wiki/ Printed on 2025/06/27 13:15 (0 seconds ago)

permission android:name=“android.permission.VIBRATE”/>

Now we can finally implement the vibration functionality on the Android platform:

app/src/main/java/org/orxproject/AndroidPlatform.java

package org.orxproject.orxtestnative;

import android.os.Vibrator;
import android.content.Context;
import platform.Platform;

public class AndroidPlatform extends Platform {
 private Context context;
 public AndroidPlatform(Context context) {
 this.context = context;
 }
 public void Vibrate(int duration) {
 context.runOnUiThread(new Runnable() { // Since this will be called from
the game
 Vibrator v = (Vibrator)
context.getSystemService(Context.VIBRATOR_SERVICE);
 v.vibrate(duration);
 });
 }
}

We also need to set an instance of AndroidPlatform as the game's platform before the game
begins; so in app/src/main/java/org/orxproject/orxtestnative/MainActivity.java:

...

import platform.PlatformModule;

...

public class MainActivity extends NativeActivity {

...

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 PlatformModule.SetPlatform(new AndroidPlatform(this));
 ...
 }

...

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+context
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+context
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+runnable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+context

2025/06/27 13:15 (0 seconds ago) 7/7 Using SWIG to talk to Java on Android (and get access to the Android API)

Orx Learning - https://orx-project.org/wiki/

}

Notice how SetPlatform is a member of the PlatformModule class. That's how SWIG exposes
C++'s free functions in Java, static methods of the module's main class.

That's it folks, now you can go and call GetPlatform()→Vibrate(n) freely anywhere in your
game!

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/en/tutorials/android/swig_android

Last update: 2020/08/31 06:01 (5 years ago)

https://orx-project.org/wiki/
https://orx-project.org/wiki/en/tutorials/android/swig_android

	Using SWIG to talk to Java on Android (and get access to the Android API)
	Summary
	Getting to Know SWIG
	MyClass.h
	MyClass.cpp
	MyModule.i

	Defining Our Interaction with the Platform
	Platform.h
	Platform.cpp
	main.cpp

	Implementing AndroidPlatform
	PlatformModule.i
	app/src/main/java/org/orxproject/AndroidPlatform.java

