2026/01/10 06:17 (0 seconds ago) 1/5 Sound Recording

Sound Recording

Prerequisites

Right now you need the svn version of orx in order to actually be able to record sound. However this
is subject too change in the next couple of weeks. You can find it at:
http://orx.svn.sourceforge.net/viewvc/orx/trunk/

We will now present some basic recipes for common tasks and then cover the advanced settings and
the whole API later.

Capturing audio data to a file

So let's say all you want to do is to capture some audio data from the default input device into a file.
This is fairly easy and can be done like this:

// Let's start recording:

orxSound StartRecording("sound.wav", orxTRUE

// _zName = "sound.wav", that's the name of the file where the captured
audio samples will be written

// Its extension determines which file format will be used for
compression.

// _bWriteToFile = orxTRUE: we'll start writing to file immediately

// _u32SampleRate = 44100: 44100 samples will be recorded per second

// _u32ChannelRate = 1 : the audio data will be mono

A sound.wav file will be created and recorded to. The format depends on the extension, here it's WAV.
The supported file extensions/formats are: WAV, CAF, VOC, AIFF, AU/SND, IFF/SVX. If the file extension
is none of these, RAW (ie. uncompressed) samples will be written.

You can decide if you want to write the recorded data to the file with _bWriteToFile =
orXTRUE/orxFALSE. We'll see later how to decide this on a per packet basis.

Passing 0 to _u32SampleRate and/or _u32ChannelNumber will use orx's default values for them.
Defaults values are 44100Hz for the sampling rate and mono for the channel number.

Once you think you have captured enough data you can stop recording like this:

orxSound StopRecording

Processing audio data

Let's now say you want to do some fancy processing of the audio data, before or instead of recording
it to a file.

Orx Learning - https://orx-project.org/wiki/

http://orx.svn.sourceforge.net/viewvc/orx/trunk/
http://en.wikipedia.org/wiki/WAV

Last update: 2025/09/30

17:26 (3 months ago) en:tutorials:audio:sound-recording https://orx-project.org/wiki/en/tutorials/audio/sound-recording?rev=1648413737

First we need an event handler, that will receive the raw audio samples:
static orxSTATUS orxFASTCALL SoundProcessingHandler(const orxEVENT ‘event
event->eType

orxEVENT TYPE_SOUND
event->elD

orxSOUND EVENT RECORDING PACKET

orxSOUND EVENT PAYLOAD* payload
orxSOUND EVENT PAYLOAD*)event->pstPayload
some_fancy library process(payload->stRecording.stPacket.asl6SampleList
payload->stRecording.stPacket.u32SampleNumber
payload->stRecording.stPacket.fTimestamp

payload->stRecording.stPacket.bWriteToFile some_fancy test
orxTRUE orxFALSE

break
orxSOUND EVENT RECORDING START

some fancy library initialize

break
orxSOUND EVENT RECORDING STOP

some fancy library finalize

break

// do nothing
break
// do nothing

break

orxSTATUS_SUCCESS

We have to register this handler to the game engine:
orxEvent AddHandler(orxEVENT TYPE SOUND, SoundProcessingHandler
Now we can start to capture audio samples:

//now let's start recording:
orxSound StartRecording("sound.wav", orxFALSE

Afterwards, the first event our handler will receive has a orxSOUND_EVENT_RECORDING_START ID.
After that, each time new audio data is available, an event of orxSOUND_EVENT_RECORDING_PACKET
ID will be created. You can access the raw audio data through the payload of the event. Beside the

https://orx-project.org/wiki/ Printed on 2026/01/10 06:17 (0 seconds ago)

2026/01/10 06:17 (0 seconds ago) 3/5 Sound Recording

audio data it also contains the number of samples that were captured and the time at which the
current samples were recorded(in seconds since starting the application). More precisely it's the
timestamp of the first sample in the current package. Each audio sample is represented by a 16bit
integer value, ranging from -32768 to 32767, 0 being an audio output level of zero.

Once again, when we are done we stop the capturing with:
orxSound StopRecording

Which will be followed by a orxSOUND_EVENT_RECORDING_STOP event.

Doing both: Capturing to a file and processing the audio
data

So what if we want to do both, capturing the data to a file and process it at the same time? Well that's
not a problem.

We can specify for each sound packet if it needs to be recorded or not by changing
payload-stRecording.stPacket.oWriteToFile.

We can also alter the samples directly in the payload array
(payload-stRecording.stPacket.asl6SamplelList). If we want to use less samples, we need also to
update their number (payload-sstRecording.stPacket.u32SampleNumber).

If we need more space for our samples, we can't reuse the array pointed by the payload. Instead we
can populate our own array and update the payload pointer and the sample number accordingly.

NB: We can't use a stack allocated array for this as the array has to be valid till the next
sound event we receive in our handler. If we allocated dynamically this array, we'll be in
charge of deleting when receiving a future sound event so as to not leak any memory.

Advanced technique

If we need more advanced setting such as only analyzing sound blocks of a given size, we can make a
local copy in a buffer till we receive the correct amoung of data. NB: We can then process it, modify it
if needed and ask for it to be written to file if needs be. One can't assume the number of samples sent
by orx will ever be constant or sent at a constant time interval.

API

Here is an overview of the API, until the doxygen documentation is updated:

/** Sound recording info
*/
typedef struct _ orxSOUND RECORDING INFO t

Orx Learning - https://orx-project.org/wiki/

Last update: 2025/09/30 _ . e) . . N o) .) . _
17:26 (3 months ago) en:tutorials:audio:sound-recording https://orx-project.org/wiki/en/tutorials/audio/sound-recording?rev=1648413737

orxu32 u32SampleRate /**< The sample rate, e.g.
44100 Hertz : 4 */
orxu32 u32ChannelNumber /**< Number of channels,

either mono (1) or stereo (2) : 8 */
orxSOUND RECORDING INFO
/** Sound recording packet

*/
typedef struct _ orxSOUND RECORDING PACKET t

orxBOOL bWriteToFile /**< Write recording to sound
file? : 4 */

orxu32 u32SampleNumber /**< Number of samples
contained in this packet : 8 */

orxS16 asl6SamplelList /**< List of samples for this
packet : 12 */

orxFLOAT fTimeStamp /**< Packet's timestamp : 16
*/

orxSOUND RECORDING PACKET

/** Sound event payload
*/
typedef struct orxSOUND EVENT PAYLOAD t

const orxSTRING zSoundName /**< Sound name : 4 */
union
orxSOUND pstSound /**< Sound reference : 8 */
struct
orxSOUND RECORDING INFO stInfo /**< Sound record info : 16 */
orxSOUND RECORDING PACKET stPacket /**< Sound record packet : 24
*
/ stRecording

/**< Recording : 24 */
orxSOUND EVENT PAYLOAD

/** Starts recording

* @param[in] _zName Name for the recorded
sound/file

* @param[in] _bWriteToFile Should write to file?

* @param[in] ~u32SampleRate Sample rate, 0 for
default rate (44100Hz)

* @param[in] _u32ChannelNumber Channel number, 0 for

https://orx-project.org/wiki/ Printed on 2026/01/10 06:17 (0 seconds ago)

2026/01/10 06:17 (0 seconds ago) 5/5

Sound Recording

default mono channel

* @return orxSTATUS SUCCESS / orxSTATUS FAILURE
o/

extern orxDLLAPI orxSTATUS orxFASTCALL

orxSound StartRecording(const orxCHAR * zName, orxBOOL bWriteToFile, orxU32

~u32SampleRate, orxU32 u32ChannelNumber

/** Stops recording

* @return orxSTATUS SUCCESS / orxSTATUS FAILURE
*/

extern orxDLLAPI orxSTATUS orxFASTCALL

orxSound StopRecording

/** Is recording possible on the current system?
* @return orxTRUE / orxFALSE

*/

extern orxDLLAPI orxBOOL orxFASTCALL

orxSound HasRecordingSupport

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:

https://orx-project.org/wiki/en/tutorials/audio/sound-recording?rev=1648413737

Last update: 2025/09/30 17:26 (3 months ago)

Orx Learning - https://orx-project.org/wiki/

https://orx-project.org/wiki/
https://orx-project.org/wiki/en/tutorials/audio/sound-recording?rev=1648413737

	Sound Recording
	Prerequisites
	Capturing audio data to a file
	Processing audio data
	Doing both: Capturing to a file and processing the audio data
	Advanced technique
	API

