2025/09/27 07:12 (0 seconds ago) 1/4 Clock tutorial

Clock tutorial

Summary

See the object tutorial for more info about basic object creation.

Here we register the processing callback on two different clocks for didactic purposes only. Of course,
all objects can be updated from the same clock. *

The first clock runs at 100 Hz and the second one at 5 Hz.

If you press the arrow keys up, down and right, you can alter the time stretching of the first clock. It'll
still be updated at the same rate, but the time information that the clock will pass to the callback will
be stretched.

This provides an easy way for adding time distortion and having parts of your logic code updated at
different frequencies. One clock can have as many registered callbacks as you want, with an optional
context parameter.

For example, the FPS displayed in the top left corner is calculated with a non-stretched clock that runs
at 1Hz.

Details

When using orx, we don't have to write a global

loop to update our logic. Instead we create a clock *, specifying its update frequency.

As we can create as many clocks as we want, we can make sure that the most important part of our
logic (player, NPCs, ...) will be updated very often, whereas low priority code will be called once in a
while (non-interactive/background objects, etc...).

There is also another big advantage in using separate clocks: we can easily achieve time stretching.

In this tutorial, we create two clocks, one that runs at 100Hz (period=0.01s) and the other at 5Hz
(period=0.2s).

orxCLOCK *pstClockl, *“pstClock2
pstClockl = orxClock CreateFromConfig("Clockl"
pstClock2 = orxClock CreateFromConfig("Clock2"

And in config we simply have:

Orx Learning - https://orx-project.org/wiki/

https://orx-project.org/wiki/en/tutorials/objects/object

Last update: 2022/12/06 13:37 (3 years ago) en:tutorials:clocks:clock https://orx-project.org/wiki/en/tutorials/clocks/clock?rev=1670362674

Clockl
Frequency 100

Clock2
Frequency 5

NB: By default the core clock will use a maximized DT (cf. orx's render module settings) which means
that the core clock and user created clocks, even based on the same frequency, might get out of sync
due to extreme lag ”. If you want to keep all your user-created clocks in sync with the core one, you
can either ask for no maximized DT for the core clock in the render module config section or set the
same maximized DT on your user clock with the orxClock SetModlifier() function.

Now we'll use the same update callback on both clocks. However, we'll give them different context so
that the first clock callback registration applies to our first object, and the second one on the other
object:

orxClock Register(pstClockl, Update, pstObjectl, orxMODULE ID MAIN
orxCLOCK PRIORITY NORMAL

orxClock Register(pstClock2, Update, pstObject2, orxMODULE ID MAIN
orxCLOCK PRIORITY NORMAL

This means our callback will be called 100 times per second with pstObjectl and 5 times per second
with pstObject?2.

As our update callback just rotates the object it gets from the context parameter, we'll have, as a
result, both objects turning as the same speed. However, the rotation of the second one will be far
less smooth (5 Hz) than the first one's (100 Hz).

Now let's have a look at the callback code itself.

First thing: we need to get our object from the extra context parameters.
As orx is using 9 0O0P in C, we need to cast it using a cast helper that will check for cast validity.

pstObject = orxOBJECT(pstContext

If this returns NULL, either the parameter is incorrect, or it isn't an orxOBJECT.

Our next step will be to apply the rotation to the object.
orxObject SetRotation(pstObject, orxMATH KF PI * pstClockInfo->fTime

We see here that we use the time taken from our clock's information structure.
That's because all our logic code is wrapped in clocks' updates that we can enforce time consistency
and allow time stretching.

Of course, there are far better ways of making an object rotate on itself *.
But let's back to our current matter: clock and time stretching!

As you have probably noticed in the source code, we were also looking for the main clock and we
registered our Updatelnput callback to it. There's a very good reason for that: we don't want to handle

https://orx-project.org/wiki/ Printed on 2025/09/27 07:12 (0 seconds ago)

https://orx-project.org/wiki/en/orx/config/settings_main/main#render_module
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming

2025/09/27 07:12 (0 seconds ago) 3/4 Clock tutorial

inputs in a user created callback as the input module will get updated from the main clock and can
possibly get out of sync of user callbacks °.

As a rule of thumb it's better to always handle inputs in callbacks registered to the main
clock or via events sent from the input module °.

Inputs are merely character strings that are bound, either in config file or by code at runtime, to key
presses, mouse buttons or even joystick buttons.

In our case, if the up or down arrow keys are pressed, we'll strecthed the time for the first clock that
has been created.

If left or right arrow keys are pressed, we'll remove the stretching and go back to the original
frequency.

As we didn't store our first created clock ”, we need to get it back!
pstClock = orxClock Get("Clockl"

Specifying -1.0f as desired period means we're not looking for a precise period but for all clocks of
the specified type. It'll return the first clock created with the orxCLOCK TYPE USER type, which is
the one updating our first object.

Now, if the “Faster” input is active(ie. up arrow key is pressed), we'll speed our clock with a factor
4x.

orxInput IsActive("Faster"
/* Makes this clock go four time faster */
orxClock SetModifier(pstClock, orxCLOCK MOD TYPE MULTIPLY, orx2F(4.0f
In the same way we make it 4X slower than originally by changing its modifier when “Slower” input
is active (ie. down arrow pressed).
orxInput IsActive("Slower"
/* Makes this clock go four time slower */

orxClock SetModifier(pstClock, orxCLOCK MOD TYPE MULTIPLY, orx2F(0.25f

Lastly, we want to set it back to normal, when the “Normal” input is active (ie. left or right arrow key
pressed).

orxInput IsActive("Normal"

/* Removes modifier from this clock */
orxClock SetModifier(pstClock, orxCLOCK MOD TYPE NONE, orxFLOAT 0O

o0
A4

And here we are!
As you can see, time stretching is achieved with a single line of code. As our logic code to rotate our

Orx Learning - https://orx-project.org/wiki/

Last update: 2022/12/06 13:37 (3 years ago) en:tutorials:clocks:clock https://orx-project.org/wiki/en/tutorials/clocks/clock?rev=1670362674

object will use the clock's modified time, we'll see the rotation of our first object changing based on
the clock modifier value.

This can be used in the exact same way to slow down monsters while the player will still move as the
same pace, for example. There are other clock modifiers type but they'll be covered later on.

Resources

Source code: 02_Clock.c
Config file: 02_Clock.ini

Video: Video by acksys

1)

The given clock context is also used here for demonstration only.
2)

or we register to an existing one, such as the core clock
3)

when dragging the window by its title bar, for example
4)

by giving it an angular velocity for example, or even by using an orxFX
5)

especially if they don't have the same frequency or different attributes
6)

OorXEVENT_TYPE_INPUT

7)

on purpose, so as to show how to retrieve it

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/en/tutorials/clocks/clock?rev=1670362674

Last update: 2022/12/06 13:37 (3 years ago)

https://orx-project.org/wiki/ Printed on 2025/09/27 07:12 (0 seconds ago)

https://github.com/orx/orx/blob/master/tutorial/src/02_Clock.c
https://github.com/orx/orx/blob/master/tutorial/bin/02_Clock.ini
http://www.youtube.com/watch?v=l9GuYhbtPzw
https://orx-project.org/wiki/
https://orx-project.org/wiki/en/tutorials/clocks/clock?rev=1670362674

	Clock tutorial
	Summary
	Details
	Resources

