
2025/11/14 03:39 (0 seconds ago) 1/12 Compositing (2D lighting pass)

Orx Learning - https://orx-project.org/wiki/

Compositing (2D lighting pass)

This tutorial is now outdated: there's a fully data-driven
approach that can be seen in the original source material for
this article.

Summary

In this tutorial we'll see how easy compositing is done in orx and that it requires almost no code at all.
In this simple example, we'll do some basic 2D lighting (no shadows).

Basically, we're going to first render all the lights to an offscreen texture using an additive blend
mode.
We'll then use this lightmap texture in the full scene using a multiplying blend mode to simulate
light/darkness.

All the files (including config, source, project and binaries) can be found on the Github public Git
repository.

https://orx-project.org/wiki/lib/exe/fetch.php?tok=803e60&media=https%3A%2F%2Fgithub.com%2Fiarwain%2Fcompositing
https://orx-project.org/wiki/lib/exe/fetch.php?tok=803e60&media=https%3A%2F%2Fgithub.com%2Fiarwain%2Fcompositing
https://orx-project.org/wiki/lib/exe/fetch.php?tok=803e60&media=https%3A%2F%2Fgithub.com%2Fiarwain%2Fcompositing

Last update: 2025/09/30 17:26 (6
weeks ago) en:tutorials:compositing:compositing https://orx-project.org/wiki/en/tutorials/compositing/compositing

https://orx-project.org/wiki/ Printed on 2025/11/14 03:39 (0 seconds ago)

https://orx-project.org/wiki/lib/exe/fetch.php?tok=f2c420&media=https%3A%2F%2Fraw.githubusercontent.com%2Fiarwain%2Fcompositing%2Fmaster%2Fscreenshot%2Fcompositing-0001.png

2025/11/14 03:39 (0 seconds ago) 3/12 Compositing (2D lighting pass)

Orx Learning - https://orx-project.org/wiki/

Code

Let's now have a look at the source code: src/compositing.cpp.

Here's the InitTextures() function.
That's where we're going to create a texture for our lightmap rendering but also a background and a
spotlight texture.
We could have used external bitmaps for those last two but it's a good way of showing how textures
can be procedurally generated.

First, we create a 256×256 texture and fill it with a XOR pattern.

void InitTextures()
{
 orxU32 u32X, u32Y, u32Size;
 orxFLOAT fScreenWidth, fScreenHeight, fSpotRadius;
 orxTEXTURE *pstTexture;
 orxBITMAP *pstBitmap;
 orxU8 *au8Data;

 // Gets screen size
 orxDisplay_GetScreenSize(&fScreenWidth, &fScreenHeight);

https://orx-project.org/wiki/lib/exe/fetch.php?tok=768a81&media=https%3A%2F%2Fraw.githubusercontent.com%2Fiarwain%2Fcompositing%2Fmaster%2Fscreenshot%2Fcompositing-0002.png
https://orx-project.org/wiki/lib/exe/fetch.php?tok=79c7d0&media=https%3A%2F%2Fgithub.com%2Fiarwain%2Fcompositing%2Fblob%2Fmaster%2Fsrc%2Fcompositing.cpp
https://orx-project.org/wiki/lib/exe/fetch.php?tok=44f216&media=http%3A%2F%2Flodev.org%2Fcgtutor%2Fxortexture.html

Last update: 2025/09/30 17:26 (6
weeks ago) en:tutorials:compositing:compositing https://orx-project.org/wiki/en/tutorials/compositing/compositing

https://orx-project.org/wiki/ Printed on 2025/11/14 03:39 (0 seconds ago)

 // Creates background texture
 pstBitmap = orxDisplay_CreateBitmap(256, 256);
 pstTexture = orxTexture_Create();
 orxTexture_LinkBitmap(pstTexture, pstBitmap, "BackgroundTexture");

 // Allocates pixel buffer
 au8Data = (orxU8 *)orxMemory_Allocate(256 * 256 * sizeof(orxRGBA),
orxMEMORY_TYPE_VIDEO);

 // For all pixels
 for(u32Y = 0; u32Y < 256; u32Y++)
 {
 for(u32X = 0; u32X < 256; u32X++)
 {
 orxU32 u32Index;
 orxU8 u8Value;

 // Gets pixel value
 u8Value = (orxU8)(u32X ^ u32Y);

 // Gets pixel index
 u32Index = (u32Y * 256 + u32X) * sizeof(orxRGBA);

 // Stores pixel channels
 au8Data[u32Index] =
 au8Data[u32Index + 1] =
 au8Data[u32Index + 2] = u8Value;
 au8Data[u32Index + 3] = 0xFF;
 }
 }

 // Updates bitmap content
 orxDisplay_SetBitmapData(pstBitmap, au8Data, 256 * 256 * sizeof(orxRGBA));

 // Frees pixel buffer
 orxMemory_Free(au8Data);

Now here's the important bit we'd have to do even if we were to use external bitmaps for our
background and spot light textures: the lightmap texture creation.

As you can see it's pretty straightforward: we create a bitmap of the same size than our display,
create an empty texture and then bind them together with the name LightMapTexture.
That's the name we're going to use in config to reference this texture.

 // Creates lightmap texture
 pstBitmap = orxDisplay_CreateBitmap(orxF2U(fScreenWidth),
orxF2U(fScreenHeight));
 pstTexture = orxTexture_Create();
 orxTexture_LinkBitmap(pstTexture, pstBitmap, "LightMapTexture");

2025/11/14 03:39 (0 seconds ago) 5/12 Compositing (2D lighting pass)

Orx Learning - https://orx-project.org/wiki/

Let's now create a texture for our spotlight, a simple white circle with soft edges will do the trick.
Actually all the pixels are white and we only vary the opacity (ie. the alpha value).
When a texture is rendered with an additive blend mode, it's the alpha value of a pixel that will
determine how much of its color will be added to the background pixel.

 // Pushes main config section
 orxConfig_PushSection("Main");

 // Gets spot size & inner radius
 u32Size = orxConfig_GetU32("SpotLightSize");
 fSpotRadius = orxConfig_GetFloat("SpotLightRadius");

 // Pops config section
 orxConfig_PopSection();

 // Creates spotlight texture
 pstBitmap = orxDisplay_CreateBitmap(u32Size, u32Size);
 pstTexture = orxTexture_Create();
 orxTexture_LinkBitmap(pstTexture, pstBitmap, "SpotLightTexture");

 // Allocates pixel buffer
 au8Data = (orxU8 *)orxMemory_Allocate(u32Size * u32Size * sizeof(orxRGBA),
orxMEMORY_TYPE_VIDEO);

 // For all pixels
 for(u32Y = 0; u32Y < u32Size; u32Y++)
 {
 for(u32X = 0; u32X < u32Size; u32X++)
 {
 orxU32 u32Index;
 orxU8 u8Alpha;
 orxFLOAT fDistance;

 // Gets pixel distance from center
 fDistance = orxMath_Sqrt(orxMath_Pow(orxU2F(u32X) - (orx2F(0.5f) *
orxU2F(u32Size)), orx2F(2.0)) + orxMath_Pow(orxU2F(u32Y) - (orx2F(0.5f) *
orxU2F(u32Size)), orx2F(2.0)));

 // Gets pixel alpha
 u8Alpha = (orxU8)orxF2U(orx2F(255.0f) * orxMath_SmoothStep(orx2F(0.5f)
* orxU2F(u32Size), fSpotRadius, fDistance));

 // Gets pixel index
 u32Index = (u32Y * u32Size + u32X) * sizeof(orxRGBA);

 // Stores pixel channels
 au8Data[u32Index] =
 au8Data[u32Index + 1] =
 au8Data[u32Index + 2] = 0xFF;
 au8Data[u32Index + 3] = u8Alpha;
 }

Last update: 2025/09/30 17:26 (6
weeks ago) en:tutorials:compositing:compositing https://orx-project.org/wiki/en/tutorials/compositing/compositing

https://orx-project.org/wiki/ Printed on 2025/11/14 03:39 (0 seconds ago)

 }

 // Updates bitmap content
 orxDisplay_SetBitmapData(pstBitmap, au8Data, u32Size * u32Size *
sizeof(orxRGBA));

 // Frees pixel buffer
 orxMemory_Free(au8Data);
}

Let's now have a look at the Init() function that will get called when orx is executed.

First we call the InitTextures() function, making sure all the textures are created and ready to be
used before creating any graphics/objects.

orxSTATUS orxFASTCALL Init()
{
 orxS32 i;
 orxSTATUS eResult = orxSTATUS_SUCCESS;

 // Creates and inits textures
 InitTextures();

Let's now use the Main.ViewportList config parameter to create as many viewports as we need.

The way it's done here makes it very easy to add new viewports/cameras without having to change
the code later one.
That's how we added a control viewport to show what is exactly rendered onto the
LightMapTexture without having to change a single line of code.

 // Pushes main config section
 orxConfig_PushSection("Main");

 // Creates all viewports
 for(i = 0; i < orxConfig_GetListCounter("ViewportList"); i++)
 {
 orxViewport_CreateFromConfig(orxConfig_GetListString("ViewportList",
i));
 }

 // Pops config section
 orxConfig_PopSection();

Let's now create our scene. It contains all our objects, including a background, different colored
spotlights and a lightmap object used for the final compositing process.

 // Creates scene
 pstScene = orxObject_CreateFromConfig("Scene");

 // Done!

2025/11/14 03:39 (0 seconds ago) 7/12 Compositing (2D lighting pass)

Orx Learning - https://orx-project.org/wiki/

 return eResult;
}

Our Run() function doesn't do much beside listening for the Quit and Screenshot inputs.

orxSTATUS orxFASTCALL Run()
{
 orxSTATUS eResult = orxSTATUS_SUCCESS;

 // Screenshot?
 if(orxInput_IsActive("Screenshot") && orxInput_HasNewStatus("Screenshot"))
 {
 // Captures it
 orxScreenshot_Capture();
 }
 // Quitting?
 if(orxInput_IsActive("Quit"))
 {
 // Updates result
 eResult = orxSTATUS_FAILURE;
 }

 // Done!
 return eResult;
}

We don't actually do any cleaning in the Exit() function (we're very lazy) as all our
allocations/creations were made through orx and it'll be orx's pleasure to clean everything for us.

void orxFASTCALL Exit()
{
 // We could delete everything we created here but orx will do it for us
anyway
}

And finally we have a regular main function and a console-less windows one that whose sole purpose
is to execute orx.

int main(int argc, char **argv)
{
 // Executes orx
 orx_Execute(argc, argv, Init, Run, Exit);

 // Done!
 return EXIT_SUCCESS;
}

Last update: 2025/09/30 17:26 (6
weeks ago) en:tutorials:compositing:compositing https://orx-project.org/wiki/en/tutorials/compositing/compositing

https://orx-project.org/wiki/ Printed on 2025/11/14 03:39 (0 seconds ago)

Config

Here's where the magic happens.

As we've seen, we haven't done much related to compositing in code.
All we did was creating an empty texture named LightMapTexture that will serve as a target for
our off-screen light rendering pass.
The rest of the code was simply to create some visual assets (background & spotlight textures),
viewports&cameras and a scene.

So the secret of compositing is to be found in data/compositing.ini.

First of all, we define our custom config section Main with some data used to create the spotlight
texture and more importantly, the list of viewports we want to create.

There are two important viewports there: MainViewport and LightMapViewport.
LightMapViewport has a camera that will only render the spotlights to the off-screen texture
LightMapTexture.
When that rendering pass is done, we'll then render the full scene in MainViewport, to the screen
this time.

Finally, ControlViewport will get rendered to the screen. This viewport is simply to give a visual
cue to what happens behind the scene but doesn't take any part in the compositing process.

NB: The viewports are rendered in the order of their creation.

In our case the viewports are rendered in this order: LightMapViewport, MainViewport,
ControlViewport.

[Main]
ViewportList = LightMapViewport # MainViewport # ControlViewport
SpotLightSize = 64
SpotLightRadius = 12

Let's now have a look at their definition.

MainViewport is a regular rendering viewport using a standard camera, with no extra settings.
Note that the camera will only 'see' objects whose depth Z verify -1 < Z <= 1.

We'll then make sure only our background, lightmap object and our eventual scene objects will be in
this space.
The spotlights will have a Z outside of this range so that they won't be rendered by the
MainViewport/MainCamera couple.

[MainViewport]
Camera = MainCamera

[MainCamera]
FrustumWidth = @Display.ScreenWidth

https://orx-project.org/wiki/lib/exe/fetch.php?tok=6b7d22&media=https%3A%2F%2Fgithub.com%2Fiarwain%2Fcompositing%2Fblob%2Fmaster%2Fdata%2Fcompositing.ini

2025/11/14 03:39 (0 seconds ago) 9/12 Compositing (2D lighting pass)

Orx Learning - https://orx-project.org/wiki/

FrustumHeight = @Display.ScreenHeight
FrustumFar = 2
Position = (0, 0, -1)

Let's now have a look to our off-screen lightmap rendering.

All we have to do for that is to specify a BackgroundColor1) and a Texture2) for our
LightMapViewport.

There's nothing special about LightMapCamera beside the fact it'll only 'see' objects whose depth Z
verify -11 < Z <= -9.

[LightMapViewport]
Camera = LightMapCamera
Texture = LightMapTexture
BackgroundColor = (0, 0, 0)

[LightMapCamera@MainCamera]
Position = (0, 0, -11)

Lastly we define ControlViewport to be a vignette in the top left corner of our display.
It'll use the same camera used for lightmap rendering (LightMapCamera) and will thus display on
screen what was rendered off-screen to the LightMapTexture texture.

[ControlViewport]
Camera = LightMapCamera
Size = (0.25, 0.25, 1)
UseRelativeSize = true
BackgroundColor = (20, 20, 20)

Let's now define all our scene objects.

We begin with the scene itself that contains a Background, the LightMap proxy object and 4
SpotLights.

[Scene]
ChildList = Background #
 LightMap #
 SpotLight1 # SpotLight2 # SpotLight3 # SpotLight4

The Background object is very straightforward.

We set it as a child of the MainCamera so that it'll be stretched to fill the full camera frustum, be as
far as possible from the camera to be rendered first and with no blending as it's a completely opaque
object (which is a rendering optimization).

It also use a graphic whose texture is named BackgroundTexture.
What happens here is that orx will try to see if it already has a texture with that name in store (which
it does as we created it programmatically).
If it weren't to find that texture, it'll then try to load it from file3).

Last update: 2025/09/30 17:26 (6
weeks ago) en:tutorials:compositing:compositing https://orx-project.org/wiki/en/tutorials/compositing/compositing

https://orx-project.org/wiki/ Printed on 2025/11/14 03:39 (0 seconds ago)

[Background]
ParentCamera = MainCamera
Position = (0, 0, 0.5)
Scale = 1
Graphic = BackgroundGraphic
Color = (240, 240, 240)
BlendMode = none

[BackgroundGraphic]
Pivot = center
Texture = BackgroundTexture

Now to the LightMap object which is the important one for the compositing process.

We define this object to also follow the camera but this time it's very close to it so that it'll get
rendered last (ie. when everything else in the scene is already rendered).

It's using the LightMapTexture that we created in code. However we didn't fill it with any content.
But every time LightMapViewport is rendered, the content of the texture gets updated with all the
rendered spotlights.

It's also using a multiply blending mode which means that every pixel of the background will have
its value multiplied by the matching pixel of this object upon rendering.
If the pixel of the LightMapTexture is white, then the background pixel will remain 'untouched' (aka
lit).
If the pixel is black, on the contrary, then the background pixel will also become black (aka in
darkness).
Any intermediate value will result in apparent more of less dimly lit background pixel (including
colored lighting).

That's where all the compositing 'magic' takes place. Pretty easy, isn't it?

[LightMap]
ParentCamera = MainCamera
Position = (0, 0, 0.1)
Scale = 1
Graphic = LightMapGraphic
BlendMode = multiply

[LightMapGraphic]
Pivot = center
Texture = LightMapTexture

Now to the spotlights.

They're basically using the 'SpotLightTexture' we created in code, some have been colored.
They'll all be moving/rotating independently too.

Please note that they all have a Z = -10, which means only the LightMapCamera can see them.

2025/11/14 03:39 (0 seconds ago) 11/12 Compositing (2D lighting pass)

Orx Learning - https://orx-project.org/wiki/

[SpotLight1]
Position = (0, 0, -10)
Scale = (10, 3, 1)
AngularVelocity = 90
Color = (0, 200, 0)
Graphic = SpotLightGraphic
BlendMode = add

[SpotLight2@SpotLight1]
Position = (0, -150, -10)
AngularVelocity = 45
Color = (200, 0, 0)

[SpotLight3@SpotLight1]
Position = (0, 150, -10)
AngularVelocity = 180
Color = (0, 0, 200)

[SpotLight4@SpotLight1]
Position = (0, 0, -10)
Scale = 5
AngularVelocity = 0
Color = (120, 120, 120)
FXList = SpotLightFX

[SpotLightGraphic]
Pivot = center
Texture = SpotLightTexture

We're skipping all other config values as they are irrelevant for the compositing process and are
simply defining an orxFX to get one of the spotlight move along a sinusoidal curve and some global
settings such as the display size, the screenshot file prefix and format, hiding the mouse, etc…

That's all, folks!

1)

otherwise lightmap rendering will accumulate from one frame to another
2)

the famous LightMapTexture we created in code
3)

but we have no file named BackgroundTexture in the same folder as our executable so that would
fail

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/en/tutorials/compositing/compositing

Last update: 2025/09/30 17:26 (6 weeks ago)

https://orx-project.org/wiki/
https://orx-project.org/wiki/en/tutorials/compositing/compositing

Last update: 2025/09/30 17:26 (6
weeks ago) en:tutorials:compositing:compositing https://orx-project.org/wiki/en/tutorials/compositing/compositing

https://orx-project.org/wiki/ Printed on 2025/11/14 03:39 (0 seconds ago)

	Compositing (2D lighting pass)
	Summary
	Code
	Config

