
2025/11/27 22:35 (0 seconds ago) 1/11 Localization tutorial

Orx Learning - https://orx-project.org/wiki/

Localization tutorial

Summary

This is our first basic C++ tutorial. It also shows how the localization module (orxLOCALE) works.

See previous basic tutorials for more info about basic object creation, clock handling, frames
hierarchy, animations, cameras & viewports, sounds & musics, FXs, physics and scrolling.

This code is a basic C++ example to show how to use orx without writing C code.
This tutorial could have been architectured in a better way (cutting it into pieces with headers files,
for example) but we wanted to keep a single file per *basic* tutorial.

This stand alone executable also creates a terminal console 1), but you can have you own console-less
program if you wish.
For visual studio users (windows), it can easily be achieved by writing a WinMain() function
instead of main(), and by calling orx_WinExecute() instead of orx_Execute().

This tutorial simply display orx's logo and a localized legend. Press space or click left mouse button to
cycle through all the available languages for the legend's text.

Some explanations about core elements that you can find in this tutorial:

Run function: Don't put *ANY* logic code here, it's only a backbone where you can handle
default core behaviors (tracking exit or changing locale, for example) or profile some stuff. As
it's directly called from the main loop and not part of the clock system, time consistency can't
be enforced. For all your main game execution, please create (or use an existing) clock and
register your callback to it.

Event handlers: When an event handler returns orxSTATUS_SUCCESS, no other handler will
be called after it for the same event. On the other hand, if orxSTATUS_FAILURE is returned,
event processing will continue for this event if other handlers are listening this event type. We'll
monitor locale events to update our legend's text when the selected language is changed.

orx_Execute()/orxWinExecute(): Inits and executes orx using our self-defined functions
(Init, Run and Exit). We can of course not use this helper and handles everything manually if its
behavior doesn't suit our needs. You can have a look at the content of
orx_Execute()/orx_WinExecute() 2) to have a better idea on how to do this.

Details

Let's start with the includes.

#include "orx.h"

That's all one need to include so as to use orx. This include works equally with a C or a C++ compiler
3).

https://orx-project.org/wiki/en/tutorials/objects/object
https://orx-project.org/wiki/en/tutorials/clocks/clock
https://orx-project.org/wiki/en/tutorials/objects/frame
https://orx-project.org/wiki/en/tutorials/objects/frame
https://orx-project.org/wiki/en/tutorials/animation/anim
https://orx-project.org/wiki/en/tutorials/viewport/viewport
https://orx-project.org/wiki/en/tutorials/audio/sound
https://orx-project.org/wiki/en/tutorials/fx/fx
https://orx-project.org/wiki/en/tutorials/physics/physics
https://orx-project.org/wiki/en/tutorials/scrolling
https://en.wikipedia.org/wiki/visual_studio
https://en.wikipedia.org/wiki/visual_studio

Last update: 2025/09/30 17:26 (8
weeks ago) en:tutorials:localization:locale https://orx-project.org/wiki/en/tutorials/localization/locale?rev=1598877868

https://orx-project.org/wiki/ Printed on 2025/11/27 22:35 (0 seconds ago)

Let's now have a look at our Game class that contains orx's Init(), Run() and Exit() callbacks.

class Game
{
public:
 static orxSTATUS orxFASTCALL EventHandler(const orxEVENT *_pstEvent);
 static orxSTATUS orxFASTCALL Init();
 static void orxFASTCALL Exit();
 static orxSTATUS orxFASTCALL Run();

 void SelectNextLanguage();

 Game() : m_poLogo(NULL), s32LanguageIndex(0) {};
 ~Game() {};

private:
 orxSTATUS InitGame();

 Logo *m_poLogo;
 orxS32 s32LanguageIndex;
};

All the callbacks could actually have been defined out of any class. This is done here just to show how
to do it if you need it.
We see that our Game class also contains our Logo object and an index to the current selected
language.

Let's now have a look to our Logo class definition.

class Logo
{
private:
 orxOBJECT *m_pstObject;
 orxOBJECT *m_pstLegend;

public:
 Logo();
 ~Logo();
};

Nothing fancy here, we have a reference to an orxOBJECT that will be our logo and another one that
will be the displayed localized legend.
As you'll see we won't use the reference at all in this executable, we just keep them so as to show a
proper cleaning when our Logo object is destroyed. If we don't do it manually, orx will take care of it
when quitting anyway.

Let's now see its constructor.

Logo::Logo()
{

2025/11/27 22:35 (0 seconds ago) 3/11 Localization tutorial

Orx Learning - https://orx-project.org/wiki/

 m_pstObject = orxObject_CreateFromConfig("Logo");
 orxObject_SetUserData(m_pstObject, this);

 m_pstLegend = orxObject_CreateFromConfig("Legend");
}

As seen in the previous tutorials we create our two objects (Logo and Legend) and we link our Logo
C++ object to its orx equivalent using orxObject_SetUserData().

Logo::~Logo()
{
 orxObject_Delete(m_pstObject);
 orxObject_Delete(m_pstLegend);
}

Simple cleaning here as we only delete our both objects.

Let's now see our main function.

int main(int argc, char **argv)
{
 orx_Execute(argc, argv, Game::Init, Game::Run, Game::Exit);

 return EXIT_SUCCESS;
}

As we can see, we're using the orx_Execute() helper that will initialize and execute orx for us.
In order to do so, we need to provide it our executable name and the command line parameters along
with three callbacks: Init(), Run() and Exit().
We will only exit from this helper function when orx quits.

Let's have a quick glance at the console-less version for windows.

#ifdef __orxMSVC__

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR
lpCmdLine, int nCmdShow)
{
 // Inits and executes orx
 orx_WinExecute(Game::Init, Game::Run, Game::Exit);

 // Done!
 return EXIT_SUCCESS;
}

#endif

Same as for the traditional main() version except that we use the orx_WinExecute() helper that
will compute the correct command line parameters and use it. 4)

This only works for a console-less windows game 5).

Last update: 2025/09/30 17:26 (8
weeks ago) en:tutorials:localization:locale https://orx-project.org/wiki/en/tutorials/localization/locale?rev=1598877868

https://orx-project.org/wiki/ Printed on 2025/11/27 22:35 (0 seconds ago)

Let's now see how our Init() code looks like.

orxSTATUS Game::Init()
{
 orxLOG("10_Locale Init() called!");

 return soMyGame.InitGame();
}

We simply initialize our Game instance by calling its InitGame() method.
Let's see its content.

orxEvent_AddHandler(orxEVENT_TYPE_LOCALE, EventHandler);

m_poLogo = new Logo();

std::cout << "The available languages are:" << std::endl;
for(orxS32 i = 0; i < orxLocale_GetLanguageCounter(); i++)
{
 std::cout << " - " << orxLocale_GetLanguage(i) << std::endl;
}

orxViewport_CreateFromConfig("Viewport");

We simply register a callback to catch all the orxEVENT_TYPE_LOCALE events.
We then instanciate our Logo object that contains both logo and legend.
We also outputs all the available languages that have been defined in config files. We could have
used the orxLOG() macro to log as usual (on screen and in file), but we did it the C++ way here to
show some diversity.
We finish by creating our viewport, as seen in all the previous tutorials.

Let's now see our Exit() callback.

void Game::Exit()
{
 delete soMyGame.m_poLogo;
 soMyGame.m_poLogo = NULL;

 orxLOG("10_Locale Exit() called!");
}

Simple Logo object deletion here, nothing surprising.

Now let's have a look to our Run() callback.

orxSTATUS Game::Run()
{
 orxSTATUS eResult = orxSTATUS_SUCCESS;

 if(orxInput_IsActive("CycleLanguage") &&

2025/11/27 22:35 (0 seconds ago) 5/11 Localization tutorial

Orx Learning - https://orx-project.org/wiki/

orxInput_HasNewStatus("CycleLanguage"))
 {
 soMyGame.SelectNextLanguage();
 }

 if(orxInput_IsActive("Quit"))
 {
 orxLOG("Quit action triggered, exiting!");
 eResult = orxSTATUS_FAILURE;
 }

 return eResult;
}

Two things are done here.
First when the input CycleLanguage is activated we switch to the next available language, then
when the Quit one is activated, we simply return orxSTATUS_FAILURE.
When the Run() callback returns orxSTATUS_FAILURE orx (when used with the helper
orx_Execute()) will quit.

Let's have a quick look to the SelectNextLanguage() method.

void Game::SelectNextLanguage()
{
 s32LanguageIndex = (s32LanguageIndex == orxLocale_GetLanguageCounter() -
1) ? 0 : s32LanguageIndex + 1;

 orxLocale_SelectLanguage(orxLocale_GetLanguage(s32LanguageIndex));
}

We basically go to the next available language (cycling back to the beginning of the list when we
reached the last one) and selects it with the orxLocale_SelectLanguage() function.
When doing so, all created orxTEXT objects will be automatically updated if they use a localized
string. We'll see how to do that below in the config description.
We can also catch any language selection as done in our EventHandler callback.

orxSTATUS orxFASTCALL Game::EventHandler(const orxEVENT *_pstEvent)
{
 switch(_pstEvent->eID)
 {
 case orxLOCALE_EVENT_SELECT_LANGUAGE:

 orxLOCALE_EVENT_PAYLOAD *pstPayload;
 pstPayload = (orxLOCALE_EVENT_PAYLOAD *)_pstEvent->pstPayload;
 orxLOG("Switching to '%s'.", pstPayload->zLanguage);
 break;

 default:

 break;
 }

Last update: 2025/09/30 17:26 (8
weeks ago) en:tutorials:localization:locale https://orx-project.org/wiki/en/tutorials/localization/locale?rev=1598877868

https://orx-project.org/wiki/ Printed on 2025/11/27 22:35 (0 seconds ago)

 return orxSTATUS_FAILURE;
}

As you can see, we only track the orxLOCALE_EVENT_SELECT_LANGUAGE event here so as to
display which is the new selected language.

We're now done with the code part of this tutorial. Let's now have a look at the config.

First let's define our display.

[Display]
ScreenWidth = 800
ScreenHeight = 600
Title = Stand Alone/Locale Tutorial

As you can see, we're creating a window of resolution 800×600 and define its title.

Let's now define our resource paths.

[Resource]
Texture = ../data/object

We're only using textures and they're all in a single folder (../data/object).

We now need to provide info for our viewport and camera.

[Viewport]
Camera = Camera
BackgroundColor = (20, 10, 10)

[Camera]
FrustumWidth = @Display.ScreenWidth
FrustumHeight = @Display.ScreenHeight
FrustumFar = 2.0
Position = (0.0, 0.0, -1.0)

Nothing new here as everything was already covered in the viewport tutorial.

Let's now see which inputs are defined.

[Input]
SetList = MainInput

[MainInput]
KEY_ESCAPE = Quit
KEY_SPACE = CycleLanguage
MOUSE_LEFT = CycleLanguage

In the Input section, we define all our input sets. In this tutorial we'll only use one called MainInput
but we can define as many sets as we want (for example, one for the main menu, one for in-game,

https://orx-project.org/wiki/en/tutorials/viewport/viewport

2025/11/27 22:35 (0 seconds ago) 7/11 Localization tutorial

Orx Learning - https://orx-project.org/wiki/

etc…).

The MainInput sets contain 3 mapping:

KEY_ESCAPE will trigger the input named Quit
KEY_SPACE and MOUSE_LEFT will both trigger the input named CycleLanguage

We can add as many inputs we want in this section and bind them to keys, mouse buttons (including
wheel up/down), joystick buttons or even joystick axes.

Let's now see how we define languages that will be used by the orxLOCALE module.

[Locale]
LanguageList = English # French # Spanish # German # Finnish # Swedish #
Norwegian # Chinese

[English]
Content = This is orx's logo.
Lang = (English)

[French]
Content = Ceci est le logo d'orx.
Lang = (Français)
LocalizedFont = CustomFont

[Spanish]
Content = Este es el logotipo de orx.
Lang = (Español)

[German]
Content = Das ist orx Logo.
Lang = (Deutsch)
LocalizedFont = CustomFont

[Finnish]
Content = Tämä on orx logo.
Lang = (Suomi)

[Swedish]
Content = Detta är orx logotyp.
Lang = (Svenska)
LocalizedFont = CustomFont

[Norwegian]
Content = Dette er orx logo.
Lang = (Norsk)

[Chinese]
Content = 这是Orx的标志
Lang = (Chinese)
LocalizedFont = CustomChineseFont

Last update: 2025/09/30 17:26 (8
weeks ago) en:tutorials:localization:locale https://orx-project.org/wiki/en/tutorials/localization/locale?rev=1598877868

https://orx-project.org/wiki/ Printed on 2025/11/27 22:35 (0 seconds ago)

To define languages for localization we only need to define a Locale section and define a
LanguageList that will contain all the languages we need.
After that we need to define one section per language and for every needed keys (here Content and
Lang) we set their localized text.
In the same way, we defined LocalizedFont for one language out of two, and we will use it for
specifying a specific font based on the text/language combination.

As the localization system in based on orx's config one, we can use its inheritance capacity for easily
adding new languages to the list (in another extern file, for example), or even for completing
languages that have been partially defined.

Let's now see how we defined our Logo object.

[LogoGraphic]
Texture = orx.png
Pivot = center

[Logo]
Graphic = LogoGraphic
FXList = FadeIn # LoopFX # ColorCycle1
Smoothing = true

Again, everything we can see here is already covered in the object tutorial.
If you're curious you can look directly at 10_Locale.ini to see which kind of FXs we defined, but we
won't cover them in detail here.

Next thing to check: our Legend object.

[Legend]
ChildList = Legend1 # Legend2

Surprise! Actually it's an empty object that will spawn two child objects: Legend1 and Legend2.

Code-wise we were creating a single object called Legend but apparently we'll end up with more than
one object.
The same kind of technique can be used to generated a whole group of objects, or a complete
scenery for example, without having to create them one by one code-wise.
It's even possible to chain objects with ChildList and only create a single object in our code and
having hundreds of actual objects created.
However, we won't have direct pointers on them, which means we won't be able to manipulate them
directly.
That being said, for all non-interactive/background object it's usually not a problem.
Be also aware that their frames (cf. frame tutorial) will reflect the hierarchy of the ChildList
'chaining'.

Ok, now let's get back to our two object, Legend1 and Legend2.

[Legend1]
Graphic = Legend1Graphic

https://orx-project.org/wiki/en/tutorials/objects/object
https://github.com/orx/orx/blob/master/tutorial/bin/10_Locale.ini
https://orx-project.org/wiki/en/tutorials/objects/frame

2025/11/27 22:35 (0 seconds ago) 9/11 Localization tutorial

Orx Learning - https://orx-project.org/wiki/

Position = (0, 0.25, 0.0)
FXList = ColorCycle2
ParentCamera = Camera

[Legend2]
Graphic = Legend2Graphic
Position = (0, 0.3, 0.0)
FXList = @Legend1
ParentCamera = @Legend1

They look very basic, they're both using the same FX (ColorCyle2), they both have a Position and
each of them has its own Graphic.

NB: We can also see that we defined the ParentCamera attribute for both of them. This means that
their actual parent will become the camera and not the Legend object in the end.
However Legend will still remain their owner, which means that they'll automatically be erased when
Legend will be deleted.

Let's now finish by having a look at their Graphic objects.

[Legend1Text]
String = $Content
Font = $LocalizedFont

[Legend2Text]
String = $Lang

[Legend1Graphic]
Pivot = center
Text = Legend1Text

[Legend2Graphic]
Pivot = center
Text = Legend2Text

We can see that each Graphic has its own Text attribute: Legend1Text and Legend2Text.
They both have a different String.
The leading $ character indicates that we won't display a raw text but that we'll use the content as a
key for the localization system.
So in the end, the Legend1 object will display the localized string with the key Content, and
Legend2 the one which has the key Lang.

Everytime we will switch to another language, both orxTEXT objects (ie. Legend1Text and

Legend2Text) will have their content updated automagically in the new selected language.
As we saw earlier, we can catch the orxLOCALE_EVENT_SELECT_LANGUAGE event to do our own
specific processing in addition, if needed.

We can also see that Legend1Text is using a font defined in the language section with the key
LocalizedFont. This way the font used depends on the current language. If none is defined, it'll
revert to orx's default one. This come in handy when you want separate fonts for different languages

Last update: 2025/09/30 17:26 (8
weeks ago) en:tutorials:localization:locale https://orx-project.org/wiki/en/tutorials/localization/locale?rev=1598877868

https://orx-project.org/wiki/ Printed on 2025/11/27 22:35 (0 seconds ago)

using different alphabets.
In our case, one language out of two is defining LocalizedFont to be CustomFont and the
Chinese language defines it to CustomChineseFont.

Let's now see how custom fonts are declared in orx.

[CustomFont]
Texture = penguinattack.png
CharacterList = " !""#$%&'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxy
z{|}~�€�‚ƒ„…†‡ˆ‰Š‹Œ�Ž��‘’“”•–—˜™š›œ�žŸ ¡¢£¤¥¦§¨©ª«¬-
®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øù
úûüýþÿ"
CharacterSize = (19, 24, 0)

[CustomChineseFont]
Texture = customchinesefont.png
CharacterList = "Orx志是标的这"
CharacterSize = (24, 24, 0)
CharacterSpacing = (2, 2, 0)

The first line specifies the Texture that contains our font. Nothing really new here.

The second line, however, is a bit special. It contains all the characters defined in our font texture, in
order of appearance.
Note that we have to double the “ character inside a config block value so as to get the actual ”
character as part of the string.
Here we define all the characters (UTF-8/ANSI).

Lastly, the CharacterSize property defines the size of a single character.

The Chinese font was automatically generated by a tool called orxFontGen, using a TrueType font
called fireflysung.ttf, and only contains the characters we need for our texts.
As we only need very few characters here, the result is a micro-font.
orxFontGen also defines a property called CharacterSpacing that matches empty spaces in the
texture.
Empty spaces are useful when displaying anti-aliased text to prevent artefacts from neighboring
characters to appear on the edges.

Note: As you can see, custom fonts need to be monospaced, with all the characters assembled in a
grid manner, without any extra spacing.

Resources

Source code: 10_Locale.cpp

Config file: 10_Locale.ini

1)

not to be mistaken with orx's internal interactive console

https://orx-project.org/wiki/en/orx/config/settings_structure/orxtext#orxfontgen
https://orx-project.org/wiki/en/orx/config/settings_structure/orxtext#orxfontgen
https://github.com/orx/orx/blob/master/tutorial/src/10_Locale.cpp
https://github.com/orx/orx/blob/master/tutorial/bin/10_Locale.ini

2025/11/27 22:35 (0 seconds ago) 11/11 Localization tutorial

Orx Learning - https://orx-project.org/wiki/

2)

which are implemented in orx.h
3)

in this case the preprocessor macro

__orxCPP__

will be automatically defined
4)

the ones given as parameter don't contain the executable name which is needed to determine the
main config file name
5)

which uses WinMain() instead of main()

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/en/tutorials/localization/locale?rev=1598877868

Last update: 2025/09/30 17:26 (8 weeks ago)

https://orx-project.org/wiki/
https://orx-project.org/wiki/en/tutorials/localization/locale?rev=1598877868

	Localization tutorial
	Summary
	Details
	Resources

