2026/01/10 15:41 (0 seconds ago) 1/5 Passing items from one Object to another

Passing items from one Object to another

Say you had a game where your player character needed to collect objects and carry them around.
Also it needed to drop them off or give them to another character.

Objects that are children of a parent object can easily fulfil this role. Thankfully the parenthood of an
item can be assigned at will to another object.

Let's work through an example where an object will travel from left to right. If it collides with the item,
the object will “collect” it. And when the object collides with the dropoff object, it will pass the item to
the dropoff.

Default Project

Create a project using Orx's init script.

Assets

Three objects are required for this tutorial. Download each and save them to your data/texture folder
in your project.

Ee

Defining the Objects in the Config

Start with the object config:

Carrier
Graphic @
Texture boss-core.png
Pivot center
Position -300, 0, O
Body CarrierBody
Item
Graphic @
Texture item.png
Pivot center

Orx Learning - https://orx-project.org/wiki/

https://orx-project.org/wiki/en/tutorials/projects/creating_your_own_project
https://orx-project.org/wiki/_media/tutorials/physics/boss-core.png
https://orx-project.org/wiki/_media/tutorials/objects/item.png
https://orx-project.org/wiki/_media/tutorials/objects/dropoff.png

Last update: 2025/09/30 17:26 (3 en:tutorials:objects:passing_objects https://orx-project.org/wiki/en/tutorials/objects/passing_objects

months ago)

Position 0, 0, -0.1

Body ItemBody

Dropoff
Graphic @
Texture dropoff.png
Pivot center
Position 300, 0, O
Body DropoffBody

AngularVelocity = 20
As each will require a body for collision detection, define that next:

CarrierBody
Dynamic true
PartList CarrierBodyPart

CarrierBodyPart
Type box
SelfFlags carrier
CheckMask = item

Solid false
ItemBody
Dynamic true

PartList ItemBodyPart

ItemBodyPart
Type box
SelfFlags = item
CheckMask = carrier # dropoff

Solid false
DropoffBody
Dynamic true

PartList DropoffBodyPart

DropoffBodyPart
Type box
SelfFlags = dropoff
CheckMask = item
Solid false

Just a few notes on the bodies defined above:

e The carrier can collide with the item
e The item can collide with the carrier and the dropoff
e The dropoff can collide with the item

Next, make a Scene object to contain the three objects:

https://orx-project.org/wiki/ Printed on 2026/01/10 15:41 (0 seconds ago)

2026/01/10 15:41 (0 seconds ago) 3/5 Passing items from one Object to another

Scene
ChildList Carrier # Item # Dropoff

Now we can display this to the screen in the init() function by changing:
orxObject CreateFromConfig("Object"

to:

orxObject CreateFromConfig("Scene"

Compile and run. There should be a carrier object on the left, an item in the middle, and a dropoff
object on the right. The latter will be spinning slowly.

The carrier will need to travel right, make the delivery, and then return to the left. We'll create a
position FX to achieve this:

MovementFX
SlotlList MovementFXSlot
Loop false
MovementFXSlot
Type position
Curve sine
StartTime 0.0
EndTime 7.0
Absolute false
StartValue 0, 0, 0
EndValue 520, 0, 0O

And add this FX to the carrier:

Carrier
Graphic @
Texture carrier.png
Pivot center
Position -300, 0, O
Body CarrierBody
FXList MovementFX

Run this and the carrier will move to the right, then back to the left. We haven't supplied any actions
on physics events yet. Let's do that now.

Physics Handler

Create the following Physics Handler:

orxSTATUS orxFASTCALL PhysicsEventHandler(const orxEVENT * pstEvent

Orx Learning - https://orx-project.org/wiki/

Last update: 2025/09/30 17:26 (3

months ago) en:tutorials:objects:passing_objects https://orx-project.org/wiki/en/tutorials/objects/passing_objects

orxSTATUS eResult = orxSTATUS SUCCESS
_pstEvent-=elID orxPHYSICS EVENT CONTACT ADD

orxPHYSICS EVENT PAYLOAD ‘pstPayload
pstPayload orxPHYSICS EVENT PAYLOAD *) pstEvent--pstPayload

orxOBJECT *recipient sender
recipient = orxOBJECT(pstEvent->hRecipient
sender = orxOBJECT(pstEvent->hSender

const orxSTRING recipientName orxObject GetName(recipient
const orxSTRING senderName = orxObject GetName(sender

orxString Compare(recipientName, "Item"
orxString Compare(senderName, "Carrier"
orxObject SetParent(recipient, sender

orxString Compare(senderName, "Item"
orxString Compare(recipientName, "Carrier"
orxObject SetParent(sender, recipient

orxString Compare(recipientName, "Dropoff"
orxString Compare(senderName, "Item"
orxObject SetParent(sender, recipient

orxString Compare(senderName, "Dropoff"
orxString Compare(recipientName, "Item"
orxObject SetParent(recipient, sender

eResult

I'll explain the above. The physics event handler checks if the event type is a
orxPHYSICS EVENT CONTACT_ ADD. Which means a collision. Next, the two colliding object names
are retrieved.

Here comes the meat of the tutorial: if the item collides with the carrier, assign the item as child of
the carrier.

In the same way, if the item collides with the dropoff, make the item as a child of the dropoff.

Add the PhysicsEventHandler in the init() function:
orxEvent AddHandler(orxEVENT TYPE PHYSICS, &PhysicsEventHandler

Compile and run. The carrier will collide with the item, and “pick it up” with the

https://orx-project.org/wiki/ Printed on 2026/01/10 15:41 (0 seconds ago)

2026/01/10 15:41 (0 seconds ago) 5/5 Passing items from one Object to another

orxObject SetParent function. In effect, the item becomes a child of the carrier, and becomes
part of the parent space. Because the item's graphic has a Pivot = center, it will be placed in the
center of the item.

There is an alternative function that allows you to parent the item to an object, while at the same
time preserving the current world position of the child object. That function is:

orxObject Attach

You can replace the above functions, ie:
orxObject SetParent(recipient, sender
with:

orxObject Attach(recipient, sender

Attaching still means that a child is parented.

Compile and run again. The carrier will bump into the item and start carrying at the point it was
collided. You'll notice the same (but odd) effect when the item collides with the dropoff. It won't be
attached in the center of the drop off, but at the last collision point. Because the parent slowly turns,
the item will slowly rotate around the outside of it.

You might like the item to attach itself to some other position on the carrier. You might like to ensure
the the item, for example, attaches at 5 pixels from the top, and 10 from the left of the carrier. Maybe
the character is a person, and you want the item to attach to his hands. You can use the function:

orxObject SetWorldPosition
...right before you attach.

I'll leave that one to you to experiment with.

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/en/tutorials/objects/passing_objects

Last update: 2025/09/30 17:26 (3 months ago)

Orx Learning - https://orx-project.org/wiki/

https://orx-project.org/wiki/
https://orx-project.org/wiki/en/tutorials/objects/passing_objects

	Passing items from one Object to another
	Default Project
	Assets
	Defining the Objects in the Config
	Physics Handler

