
2026/01/17 23:41 (0 seconds ago) 1/3 Object Traversing

Orx Learning - https://orx-project.org/wiki/

Object Traversing

Imagine you have this INI file (not everything is shown in it):

[Scene]
ChildList = Terrain # Tank # Enemies

[Terrain]
Graphic = @
Texture = grass.png

[Tank]
Graphic = @
Texture = tank.png
GSide = player

[Enemies]
ChildList = Turret1 # Turret2

[Turret1]
Graphic = TurretTexture
GSide = enemy

[Turret2]
Graphic = TurretTexture
GSide = enemy

Then in your code you load scene object as a whole:

orxSTATUS orxFASTCALL Init()
{
 orxViewport_CreateFromConfig("Viewport");
 _scene = orxObject_CreateFromConfig("Scene");
...
}

In the code above you rely on orx to traverse the object tree and create it appropriately. However, in
our INI file we have added a new key GSide with values “player” and “enemy”. GSide stands for game
side. Our game code needs to initialize its internal data state according to the value of the GSide.
Some objects may not have GSide key at all. Traversing INI file with config calls is possible, but it is
not simple.

You can traverse [Scene] object child tree with the following recursive function:

void InitObject(orxOBJECT *obj) {
 orxLOG("%s: name", orxObject_GetName(obj));
}

typedef void (*ObjectHandler)(orxOBJECT *obj);

Last update: 2025/09/30 17:26 (4 months ago) en:tutorials:objecttreetraversing https://orx-project.org/wiki/en/tutorials/objecttreetraversing

https://orx-project.org/wiki/ Printed on 2026/01/17 23:41 (0 seconds ago)

void traverseScene(orxOBJECT *child, ObjectHandler objHandler) {
 orxOBJECT *sibling;
 while ((child = orxObject_GetOwnedChild(child))) {
 objHandler(child);
 sibling = child;
 while ((sibling = orxObject_GetOwnedSibling(sibling))) {
 objHandler(sibling);
 traverseScene(sibling, objHandler);
 }
 }
}

This code traverses through all of the [Scene] children, including their children and so on.

In the code above the specific functionality to handling of the object is delegated to InitObject
function. Put your custom logic into it and you are done.

"iarwain" has made a few points to keep in mind

This will not traverse any objects that are not connected to scene hierarchy
Objects that have been created as part of the Scene hierarchy can decide to exclude
themselves from that hierarchy at any point (usually done for permanent objects, UI objects,
etc…)
You might want to look at Scroll, which is a thin C++ layer on top of orx.

Orx does bookkeeping on all the orxSTRUCTURE derivative that are created, if you want to iterate
through all the orxOBJECTS, you can do so like this:

for (orxOBJECT *pstObject =
orxOBJECT(orxStructure_GetFirst(orxSTRUCTURE_ID_OBJECT));
 pstObject != orxNULL;
 pstObject = orxOBJECT(orxStructure_GetNext(pstObject)))

Alternative to Traversing when Loading from Config

A better approach would be to attach your data when your object is created, by listening to the
orxOBJECT_EVENT_CREATE event.

Another alternative is to use scroll C++ wrapper as it takes care of orxOBJECT_EVENT_CREATE with its
binding mechanism and other tasks.

See also

Get OrxObject by Traversing Structures

https://github.com/orx/scroll
https://orx-project.org/wiki/en/examples/objects/get_object_by_traversing_structures

2026/01/17 23:41 (0 seconds ago) 3/3 Object Traversing

Orx Learning - https://orx-project.org/wiki/

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/en/tutorials/objecttreetraversing

Last update: 2025/09/30 17:26 (4 months ago)

https://orx-project.org/wiki/
https://orx-project.org/wiki/en/tutorials/objecttreetraversing

	Object Traversing
	"iarwain" has made a few points to keep in mind
	Alternative to Traversing when Loading from Config
	See also

