2026/02/02 22:53 (0 seconds ago) 1/11 The Binding of Objects in orx/Scroll

The Binding of Objects in orx/Scroll

The code for this tutorial is available at https://github.com/orx/scroll-tutorial
What is "Object Binding"?

When we refer to “Object Binding” in this sense, we're describing “hooking up” a game object to a
C++ class defining behaviors of the object.

This means when an Orx/Scroll Object is created, it can automatically be set to use a C++ class of
choice for its implementation. This makes it easy to implement behavior that is specific to certain
object types.

For instance, you want game objects to do certain things every frame. You want enemies to move on
a path, or possibly attack. You want the player's character to be moved based on user input.

Additionally, binding objects to classes makes it easy to handle Orx events on an object-specific basis.
For example, each type of object can have its own OnCreate function which is called whenever an
object of that type is created. OnDelete is called when the object is deleted, etc.

o

In this tutorial, we're going to create a small game with two specific examples of object binding. We'll
create an Enemy Bug object and a Hero object and bind them to classes. Our enemy bugs will move
semi-randomly across the screen. Our Hero will be controlled by the player. The Hero flashes red on
collision with an enemy bug as an example of FX to indicate getting hurt.

First, some preparation...

Trouble?

If you have trouble following this tutorial, please reach out in the #support channel on Discord. The
community is very helpful.

If your problems are related to physics (collision detection), it can be very useful to turn on physics
debugging. This is done in .ini config. See the comments in this tutorial's config and in
SettingsTemplate.ini linked in Latest config settings for the Development Version.

Create a new Scroll Project

Before you begin this tutorial, you need a basic Orx/Scroll project created with ore's init tool for

Orx Learning - https://orx-project.org/wiki/

https://github.com/orx/scroll-tutorial
https://discord.com/channels/522167736823185418/717481561783664681
https://orx-project.org/wiki/en/orx/config/developmentversion

Last update: 2025/11/30 14:33 (2

months ago) en:tutorials:orxscroll:binding-orxscroll https://orx-project.org/wiki/en/tutorials/orxscroll/binding-orxscroll

initializing new projects. For details on doing this, see An Introduction to Scroll.

This tutorial assumes you're starting from a fresh init project with Scroll support included!

Get the Config Ready

You'll need to download these textures * for use in your config:

Then, you'll need to prepare this config in your main project . ini file for use with this tutorial:

; BindingOfObjects - Template basic config file

Display
; FullScreen = false + Decoration = false + no dimension -> Borderless
FullScreen

Title The Binding of Objects
IconList logo.webp
FullScreen false
Decoration false
Smoothing true
VSync true
Physics

; Uncomment to show object bounding boxes
;, ShowDebug = true

Resource
Texture bundle: # bundle:BindingOfObjects.obr # ../data/texture
Font bundle: # bundle:BindingOfObjects.obr # ../data/font
Sound bundle: # bundle:BindingOfObjects.obr # ../data/sound
Bundle
ExcludelList BindingOfObjects
Clock
AllowSleep false
Config
DefaultParent Default
Default
KeepInCache true

https://orx-project.org/wiki/

Printed on 2026/02/02 22:53 (0 seconds ago)

https://orx-project.org/wiki/en/tutorials/orxscroll/introduction-orxscroll
https://orx-project.org/wiki/_detail/tutorials/orxscroll/character_boy.png?id=en%3Atutorials%3Aorxscroll%3Abinding-orxscroll
https://orx-project.org/wiki/_detail/tutorials/orxscroll/enemy_bug.png?id=en%3Atutorials%3Aorxscroll%3Abinding-orxscroll

2026/02/02 22:53 (0 seconds ago) 3/11

The Binding of Objects in orx/Scroll

Pivot

Input
KEY ESCAPE
KEY LEFT
KEY RIGHT
KEY_ UP
KEY DOWN

Main
ViewportList

MainViewport
Camera
BackgroundColor

MainCamera
FrustumWidth
FrustumHeight
FrustumFar
FrustumNear
Position
; Using a unique
OnCreate
Camera.SetParent

Scene
ChildList
EnemyBug # 0-Enem

0-Hero
Graphic
Position
Body

; Hero Class Data
MovementSpeed

G-Hero
Texture

B-Hero
PartList
Dynamic

BP-Hero

Type
SelfFlags
CheckMask

0-EnemyBug

center

Quit
MovelLeft
MoveRight
MoveUp
MoveDown

MainViewport

MainCamera
50, 50, 50

1920
1080
2
0

-1 ; Objects with -1 <= Z <= 1 will be visible

proxy object, sharing the same name

>> Camera.Get MainCamera, Camera.SetPosition < (0, 0),

<7, Set @ ID ©

O-Hero # 0-EnemyBug # 0O-EnemyBug # O-EnemyBug # O-

yBug # 0-EnemyBug

G-Hero
0, 0, 0
B-Hero

100.0

Character Boy.png

BP-Hero
true

box
0x0001
OXFFFF

Orx Learning - https://orx-project.org/wiki/

Last update: 2025/11/30 14:33 (2 en:tutorials:orxscroll:binding-orxscroll https://orx-project.org/wiki/en/tutorials/orxscroll/binding-orxscroll

months ago)

Position -600, 200, 0) ~ (600, 200, ©
Graphic G-EnemyBug

Body B-EnemyBug

;, EnemyBug Class Data
MovementSpeed 25.0
DirectionChangeInterval 0.5 ~ 2.5

G-EnemyBug
Texture Enemy Bug.png
Pivot center
B-EnemyBug
PartList BP-EnemyBug

BP-EnemyBug

Type box
SelfFlags 0x0002
CheckMask OXFFFF
FX-Flash
SlotList FXS-FlashRed # FXS-Unflash

FXS-FlashRed

Type color

Curve smoother
StartTime 0

EndTime 0.1

Absolute true
StartValue 255, 255, 255
Period 0.5

EndValue 255, 0, 0O

FXS-Unflash

Type color

Curve smoother

StartTime @FXS-FlashRed.EndTime
EndTime 0.2

Absolute true

StartValue @FXS-FlashRed.EndValue
EndValue 255, 255, 255

It's all the typical object, graphic, physics stuff you've seen in previous Orx tutorials. Notice, however,
we've added some extra properties to our EnemyBug and Hero objects. The Orx engine doesn't use
these, but we'll use them later in this tutorial.

A newly created init project creates a Scene object by default, with other objects created as
children. In the config above, we have the Hero object and several Enemy Bug objects in the
ChildList for Scene.

https://orx-project.org/wiki/ Printed on 2026/02/02 22:53 (0 seconds ago)

2026/02/02 22:53 (0 seconds ago) 5/11 The Binding of Objects in orx/Scroll

Run your project. As you might expect, you'll see a hero and a few randomly placed enemy bugs in a
gray expanse. Nothing happens since we've defined no behavior to control them. Pressing Escape will
quit the game.

Stop and think for a moment about how you might add behavior to the objects in Orx.

Giving the Bugs a Brain (Deriving the ScrollObject Class)

The first step to object binding is to create a binding class. To do that, we derive from the
ScrollObject base class. init gives us an Object class which derives from Scroll0bject and
we can derive our objects from Object.

First, let's create the interface for our derived class. Create a file called EnemyBug. h and add it to
your project. Add the following code to EnemyBug. h:

#pragma once
#include "Object.h"
enum Direction

NORTH
SOUTH
EAST
WEST
LAST = WEST

class EnemyBug : public Object

public
protected
void OnCreate
void OnDelete
void Update(const orxCLOCK INFO & rstInfo

private
// Direction of movement
Direction m_direction
// Speed of movement
orxFLOAT m_movementSpeed
// Time since change of direction
orxFLOAT m timeSinceDirectionChange
// Time interval between direction changes
orxFLOAT m_directionChangeInterval

This class represents a single enemy bug. In our derived class, we override ScrollObject's OnCreate,
OnDelete, and Update functions ”.

Orx Learning - https://orx-project.org/wiki/

Last update: 2025/11/30 14:33 (2

months ago) en:tutorials:orxscroll:binding-orxscroll https://orx-project.org/wiki/en/tutorials/orxscroll/binding-orxscroll

Let's create the class implementation. Add a file called EnemyBug.cpp to your project and add the
following code to it:

#include "EnemyBug.h"
void EnemyBug: :0OnCreate
// Set initial movement direction
m direction = SOUTH
// Get movement speed from config value
m _movementSpeed = orxConfig GetFloat("MovementSpeed"

// Get direction change interval from config value
m _directionChangeInterval = orxConfig GetFloat("DirectionChangeInterval"

void EnemyBug::0OnDelete

// Do nothing when deleted

void EnemyBug: :Update(const orxCLOCK INFO & rstInfo

// Always initialize thy variables
orxVECTOR speed = orxVECTOR 0

// Set rotation, flip, and speed based on the object's
// current direction of movement.
m_direction

orxBOOL flipX, flipY

NORTH
speed. fY m_movementSpeed
SetRotation orxMATH KF DEG TO RAD
SetFlip(false, false
break

SOUTH
speed.fY = m_movementSpeed
SetRotation orxMATH KF DEG TO RAD
SetFlip(false, false
break

WEST
speed. X m_movementSpeed
SetRotation orxMATH KF DEG TO RAD

SetFlip(true, false
GetFlip(flipX, flipY
break

EAST
speed.fX = m_movementSpeed
SetRotation
SetFlip(false, false

https://orx-project.org/wiki/ Printed on 2026/02/02 22:53 (0 seconds ago)

2026/02/02 22:53 (0 seconds ago) 7/11 The Binding of Objects in orx/Scroll

GetFlip(flipX, flipY
break

orxASSERT (false

// Update object's speed of movement
SetSpeed(speed

// Time since direction change exceeds interval of direction change?
m timeSinceDirectionChange _rstInfo.fDT
m_directionChangeInterval

// Reset time

m_timeSinceDirectionChange

// Pick random number between bounds of Direction enum

orxU32 randomNum = orxMath GetRandomU32 static_cast<orxU32-(LAST
// Update object's direction of movement

m direction = static cast<Direction=>(randomNum

This is all the code we need to bring our enemy bug to life. The code comments should explain what is
happening, but note the following:

¢ An instance of the EnemyBug class is created for every enemy bug object created. Recall in our
Scene object we create 5 enemy bug objects as children. Therefore, 5 instances of EnemyBug
are created. Each enemy bug shown on the screen has a class instance defining its behavior.

 This class makes use of the SetRotation, SetFlip, and SetSpeed functions defined in the
ScrollObject base class.

e OnCreate is called when the object is first created. We didn't define a constructor, so data
members must be initialized here.

e In OnCreate, we query values in config without pushing the object's section first. That's okay,
because Scroll pushes the binding Orx object's config section as a convenience before calling
OnCreate.

e We initialize our class members using the “custom” values we defined in config. While not
strictly necessary, this is good data-driven design. It means we can adjust these variables and
run again without recompiling.

e OnDelete is called when the object is deleted. We must provide a body for the function, but it
does nothing in our case.

e Update is called on every frame. This is the interesting part of EnemyBug. In our case, we
update its rotation and speed based on its currently direction of travel. *

ScrollObject Callbacks and Accessors

e OnCreate, OnDelete, and Update are protected callbacks from the Scroll0bject class.
That means these functions are called by Orx when these events occur on the object, allowing
you to easily override their behavior. You should never call these functions directly.

e SetRotation, SetFlip, and SetSpeed are public accessors from the Scroll0bject class.
You call them directly from other object class functions (and any other class can call them if it

Orx Learning - https://orx-project.org/wiki/

Last update: 2025/11/30 14:33 (2

months ago) en:tutorials:orxscroll:binding-orxscroll https://orx-project.org/wiki/en/tutorials/orxscroll/binding-orxscroll

has a pointer to the class instance). The accessors correspond to the similar orxObject
functions (e.g. SetPosition == orxObject SetPosition).

If you want to see all the accessors and callbacks available for overriding, see the Scroll0bject
class interface in the Scroll0bject.h file.

We've now programmed a much more interesting bug. If you run the game, however, you'll still see
nothing but still objects. That's because we haven't yet told Scroll that we want our enemy bug
objects to take on the behavior in our EnemyBug class. One step remains.

Telling Scroll about the Enemy Bug Class (Overriding
BindObjects)

The Scrol1lBindObject function accepts as a template parameter a class deriving from
ScrollObject. It accepts as a regular parameter an Orx config section name. Then it binds any
instance of the Orx object to the class.

Include EnemyBug. h after the inclusion of Object.h in binding-of-objects. cpp:
#include "EnemyBug.h"

Add the following lines to binding of objects::BindObjects in Binding0fObjects. cpp after
the line for “Object”:

// Bind the EnemyBug class to the 0-EnemyBug config section
ScrollBindObject<EnemyBug=("0-EnemyBug"

The order of calls to Scrol1BindObject does not matter as long as all of the necessary bindings
occur in BindObjects.

The BindObjects function is called when the game starts. It basically says, “Whenever we create an
object of 0-EnemyBug as defined in Orx config, make it take on all the behavior defined in the
EnemyBug class.”

Of course, the EnemyBug class must exist for this to work, which is why we made it first.

Run the game and you should see all your enemy bugs come to life.

Our Unfortunate Hero (Another Derived ScrollObject)

The bugs in our game must be very hungry! Let's add another bound object. First, add Hero.h to
your project and write its interface.

#pragma once

#include "Object.h"

https://orx-project.org/wiki/ Printed on 2026/02/02 22:53 (0 seconds ago)

2026/02/02 22:53 (0 seconds ago) 9/11 The Binding of Objects in orx/Scroll

class Hero : public Object

public
protected

void OnCreate

void OnDelete

void Update(const orxCLOCK INFO & rstInfo

void OnCollide(ScrollObject * poCollider, orxBODY PART * pstPart
orxBODY PART * pstColliderPart, const orxVECTOR & rvPosition, const
orxVECTOR &_rvNormal

private
orxFLOAT m_movementSpeed

Hero has a similar interface, but notice we've added an override for OnCollide. This function will be
called whenever Orx detects a physics collision between this object and another.

And add this code:
#include "Hero.h"
void Hero: :0OnCreate

// Get movement speed from config value
m_movementSpeed = orxConfig GetFloat("MovementSpeed"

void Hero::0nDelete

// Do nothing when deleted

void Hero: :Update(const orxCLOCK INFO & rstInfo

// Use movement input to initialize a vector to scale movement speed
orxVECTOR speed
// Vector's x component is right - left input strength. It will
// be 0.0 if the inputs are either inactive or both equally active.
orxInput GetValue("MoveRight" orxInput GetValue("MovelLeft"
// Vector's y component is down - up input strength. It will
// be 0.0 if the inputs are either inactive or both equally active.
orxInput GetValue("MoveDown" orxInput GetValue("MoveUp"
0.0

// Normalize the input vector if it has a length > 1
orxVector GetSquareSize(&speed 1.0

orxVector Normalize(&speed speed

Orx Learning - https://orx-project.org/wiki/

Last update: 2025/11/30 14:33 (2

months ago) en:tutorials:orxscroll:binding-orxscroll https://orx-project.org/wiki/en/tutorials/orxscroll/binding-orxscroll

// Scale the raw input vector by the our movement speed
orxVector Mulf(&speed speed, m _movementSpeed

// Update our speed
SetSpeed(speed, false

void Hero::0nCollide(ScrollObject * poCollider, orxBODY PART * pstPart
orxBODY PART * pstColliderPart, const orxVECTOR & rvPosition, const
orxVECTOR &_rvNormal

// Add flash effect
AddFX("FX-Flash"

The code should be almost self-explanatory. The hero's movement speed will be pulled from its config
value. The update function (called every frame) sets the speed of the character based on what
keyboard arrow is pressed. The OnCollide function adds a “flash” effect to the character.

You have to modify the Binding0fObjects: :Bind0Objects function to make it bind the new Hero
class to the 0-Hero object. Otherwise, the Hero will not be bound to its class and will just stand still in
the middle of the screen!

Try to do those things yourself. If you need help, though, here are the lines to add:

// Bind the Hero class to the 0-Hero config section
ScrollBindObject<Hero>("0-Hero"

When you run the game, you'll be able to control the hero with the arrow keys. Be careful, the bugs
will bite him if he gets too close and the OnCollide callback will make him “flash” red.

https://orx-project.org/wiki/ Printed on 2026/02/02 22:53 (0 seconds ago)

2026/02/02 22:53 (0 seconds ago) 11/11 The Binding of Objects in orx/Scroll

5 The Bnding o Oec) N i
|

What Now?

Well, you just finished making what could loosely be considered a game! Here are some additions you
could make.

e Add a “Life” property to the Hero. Modify OnCollide so the Hero loses life each time he's hit.
Give him an untimely death when life reaches O.

» Give the Hero a weapon to fire at the bugs. The OnCollide callback for the enemy bugs can be
used to make them take damage from the weapon.

e Be sure to add interesting death animations in the OnDelete callback.

e Add a more interesting background, of course.

1)

Thanks to Daniel Cook of www.lostgarden.com for the great prototyping graphics
2)

Overriding OnCreate and OnDelete is required for any class deriving from ScrollObject
3)

Why use SetSpeed and not SetPosition? Because the objects in this tutorial have physics bodies.
Calling SetPosition on objects with physics bodies messes up the physics simulation. If you want to
watch that happen, change SetSpeed to SetPosition and turn on physics debugging as described
in the config.

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/en/tutorials/orxscroll/binding-orxscroll

Last update: 2025/11/30 14:33 (2 months ago)

Orx Learning - https://orx-project.org/wiki/

http://www.lostgarden.com
https://orx-project.org/wiki/
https://orx-project.org/wiki/en/tutorials/orxscroll/binding-orxscroll

	The Binding of Objects in orx/Scroll
	What is "Object Binding"?
	Trouble?
	Create a new Scroll Project
	Get the Config Ready
	Giving the Bugs a Brain (Deriving the ScrollObject Class)
	ScrollObject Callbacks and Accessors

	Telling Scroll about the Enemy Bug Class (Overriding BindObjects)
	Our Unfortunate Hero (Another Derived ScrollObject)
	What Now?

