
2025/03/30 06:14 (0 seconds ago) 1/11 The Binding of Objects in orx/Scroll

Orx Learning - https://orx-project.org/wiki/

The Binding of Objects in orx/Scroll

The code for this tutorial is available at https://github.com/orx/scroll-tutorial

What is "Object Binding"?

When we refer to “Object Binding” in this sense, we're describing “hooking up” a game object to a
C++ class defining behaviors of the object.

This means when an Orx/Scroll Object is created, it can automatically be set to use a C++ class of
choice for its implementation. This makes it easy to implement behavior that is specific to certain
object types.

For instance, you want game objects to do certain things every frame. You want enemies to move on
a path, or possibly attack. You want the player's character to be moved based on user input.

Additionally, binding objects to classes makes it easy to handle Orx events on an object-specific basis.
For example, each type of object can have its own OnCreate function which is called whenever an
object of that type is created. OnDelete is called when the object is deleted, etc.

In this tutorial, we're going to create a small game with two specific examples of object binding. We'll
create an Enemy Bug object and a Hero object and bind them to classes. Our enemy bugs will move
semi-randomly across the screen. Our Hero will be controlled by the player. The Hero flashes red on
collision with an enemy bug as an example of FX to indicate getting hurt.

First, some preparation…

Trouble?

If you have trouble following this tutorial, please reach out in the #support channel on Discord. The
community is very helpful.

If your problems are related to physics (collision detection), it can be very useful to turn on physics
debugging. This is done in .ini config. See the comments in this tutorial's config and in
SettingsTemplate.ini linked in Latest config settings for the Development Version.

Create a new Scroll Project

Before you begin this tutorial, you need a basic Orx/Scroll project created with ore's init tool for

https://github.com/orx/scroll-tutorial
https://discord.com/channels/522167736823185418/717481561783664681
https://orx-project.org/wiki/en/orx/config/developmentversion

Last update: 2024/05/06 18:10 (11
months ago) en:tutorials:orxscroll:binding-orxscroll https://orx-project.org/wiki/en/tutorials/orxscroll/binding-orxscroll

https://orx-project.org/wiki/ Printed on 2025/03/30 06:14 (0 seconds ago)

initializing new projects. For details on doing this, see An Introduction to Scroll.

This tutorial assumes you're starting from a fresh init project with Scroll support included!

Get the Config Ready

You'll need to download these textures 1) for use in your config:

Then, you'll need to prepare this config in your main project .ini file for use with this tutorial:

; BindingOfObjects - Template basic config file

[Display]
; FullScreen = false + Decoration = false + no dimension -> Borderless
FullScreen
Title = The Binding of Objects
FullScreen = false
Decoration = false
Smoothing = true
VSync = true

[Physics]
; Uncomment to show object bounding boxes
; ShowDebug = true

[Resource]
Texture = bundle: # bundle:BindingOfObjects.obr # ../data/texture
Sound = bundle: # bundle:BindingOfObjects.obr # ../data/sound

[Input]
KEY_ESCAPE = Quit
KEY_LEFT = MoveLeft
KEY_RIGHT = MoveRight
KEY_UP = MoveUp
KEY_DOWN = MoveDown

[MainViewport]
Camera = MainCamera
BackgroundColor = (50, 50, 50)

[MainCamera]
FrustumWidth = 1280

https://orx-project.org/wiki/en/tutorials/orxscroll/introduction-orxscroll
https://orx-project.org/wiki/_detail/tutorials/orxscroll/character_boy.png?id=en%3Atutorials%3Aorxscroll%3Abinding-orxscroll
https://orx-project.org/wiki/_detail/tutorials/orxscroll/enemy_bug.png?id=en%3Atutorials%3Aorxscroll%3Abinding-orxscroll

2025/03/30 06:14 (0 seconds ago) 3/11 The Binding of Objects in orx/Scroll

Orx Learning - https://orx-project.org/wiki/

FrustumHeight = 720
FrustumFar = 10
FrustumNear = 0
Position = (0, 0, -2)

[Scene]
ChildList = O-Hero # O-EnemyBug # O-EnemyBug # O-EnemyBug # O-
EnemyBug # O-EnemyBug # O-EnemyBug

[O-Hero]
Graphic = G-Hero
Position = (0, 0, 0)
Body = B-Hero

; Hero Class Data
MovementSpeed = 100.0

[G-Hero]
Texture = Character_Boy.png

[B-Hero]
PartList = BP-Hero
Dynamic = true

[BP-Hero]
Type = box
SelfFlags = 0x0001
CheckMask = 0xFFFF

[O-EnemyBug]
Position = (-600, 200, 0) ~ (600, 200, 0)
Graphic = G-EnemyBug
Body = B-EnemyBug

; EnemyBug Class Data
MovementSpeed = 25.0
DirectionChangeInterval = 0.5 ~ 2.5

[G-EnemyBug]
Texture = Enemy_Bug.png
Pivot = center

[B-EnemyBug]
PartList = BP-EnemyBug

[BP-EnemyBug]
Type = box
SelfFlags = 0x0002
CheckMask = 0xFFFF

[FX-Flash]

Last update: 2024/05/06 18:10 (11
months ago) en:tutorials:orxscroll:binding-orxscroll https://orx-project.org/wiki/en/tutorials/orxscroll/binding-orxscroll

https://orx-project.org/wiki/ Printed on 2025/03/30 06:14 (0 seconds ago)

SlotList = FXS-FlashRed # FXS-Unflash

[FXS-FlashRed]
Type = color
Curve = smoother
StartTime = 0
EndTime = 0.1
Absolute = true
StartValue = (255, 255, 255)
Period = 0.5
EndValue = (255, 0, 0)

[FXS-Unflash]
Type = color
Curve = smoother
StartTime = @FXS-FlashRed.EndTime
EndTime = 0.2
Absolute = true
StartValue = @FXS-FlashRed.EndValue
EndValue = (255, 255, 255)

It's all the typical object, graphic, physics stuff you've seen in previous Orx tutorials. Notice, however,
we've added some extra properties to our EnemyBug and Hero objects. The Orx engine doesn't use
these, but we'll use them later in this tutorial.

A newly created init project creates a Scene object by default, with other objects created as
children. In the config above, we have the Hero object and several Enemy Bug objects in the
ChildList for Scene.

Run your project. As you might expect, you'll see a hero and a few randomly placed enemy bugs in a
gray expanse. Nothing happens since we've defined no behavior to control them. Pressing Escape will
quit the game.

Stop and think for a moment about how you might add behavior to the objects in Orx.

Giving the Bugs a Brain (Deriving the ScrollObject Class)

The first step to object binding is to create a binding class. To do that, we derive from the
ScrollObject base class. init gives us an Object class which derives from ScrollObject and
we can derive our objects from Object.

First, let's create the interface for our derived class. Create a file called EnemyBug.h and add it to
your project. Add the following code to EnemyBug.h:

#pragma once

#include "Object.h"

2025/03/30 06:14 (0 seconds ago) 5/11 The Binding of Objects in orx/Scroll

Orx Learning - https://orx-project.org/wiki/

enum Direction
{
 NORTH,
 SOUTH,
 EAST,
 WEST,
 LAST = WEST,
};

class EnemyBug : public Object
{
public:
protected:
 void OnCreate();
 void OnDelete();
 void Update(const orxCLOCK_INFO &_rstInfo);

private:
 // Direction of movement
 Direction m_direction;
 // Speed of movement
 orxFLOAT m_movementSpeed;
 // Time since change of direction
 orxFLOAT m_timeSinceDirectionChange;
 // Time interval between direction changes
 orxFLOAT m_directionChangeInterval;
};

This class represents a single enemy bug. In our derived class, we override ScrollObject's OnCreate,
OnDelete, and Update functions 2).

Let's create the class implementation. Add a file called EnemyBug.cpp to your project and add the
following code to it:

#include "EnemyBug.h"

void EnemyBug::OnCreate()
{
 // Set initial movement direction
 m_direction = SOUTH;
 // Get movement speed from config value
 m_movementSpeed = orxConfig_GetFloat("MovementSpeed");
 // Get direction change interval from config value
 m_directionChangeInterval = orxConfig_GetFloat("DirectionChangeInterval");
}

void EnemyBug::OnDelete()
{
 // Do nothing when deleted
}

Last update: 2024/05/06 18:10 (11
months ago) en:tutorials:orxscroll:binding-orxscroll https://orx-project.org/wiki/en/tutorials/orxscroll/binding-orxscroll

https://orx-project.org/wiki/ Printed on 2025/03/30 06:14 (0 seconds ago)

void EnemyBug::Update(const orxCLOCK_INFO &_rstInfo)
{
 // Always initialize thy variables
 orxVECTOR speed = orxVECTOR_0;

 // Set rotation, flip, and speed based on the object's
 // current direction of movement.
 switch (m_direction)
 {
 orxBOOL flipX, flipY;
 case NORTH:
 speed.fY = -m_movementSpeed;
 SetRotation(270 * orxMATH_KF_DEG_TO_RAD);
 SetFlip(false, false);
 break;
 case SOUTH:
 speed.fY = m_movementSpeed;
 SetRotation(90 * orxMATH_KF_DEG_TO_RAD);
 SetFlip(false, false);
 break;
 case WEST:
 speed.fX = -m_movementSpeed;
 SetRotation(0 * orxMATH_KF_DEG_TO_RAD);
 SetFlip(true, false);
 GetFlip(flipX, flipY);
 break;
 case EAST:
 speed.fX = m_movementSpeed;
 SetRotation(0);
 SetFlip(false, false);
 GetFlip(flipX, flipY);
 break;
 default:
 orxASSERT(false);
 }

 // Update object's speed of movement
 SetSpeed(speed);

 // Time since direction change exceeds interval of direction change?
 if ((m_timeSinceDirectionChange += _rstInfo.fDT) >=
m_directionChangeInterval)
 {
 // Reset time
 m_timeSinceDirectionChange = 0;
 // Pick random number between bounds of Direction enum
 orxU32 randomNum = orxMath_GetRandomU32(0, static_cast<orxU32>(LAST));
 // Update object's direction of movement
 m_direction = static_cast<Direction>(randomNum);
 }

2025/03/30 06:14 (0 seconds ago) 7/11 The Binding of Objects in orx/Scroll

Orx Learning - https://orx-project.org/wiki/

}

This is all the code we need to bring our enemy bug to life. The code comments should explain what is
happening, but note the following:

An instance of the EnemyBug class is created for every enemy bug object created. Recall in our
Scene object we create 5 enemy bug objects as children. Therefore, 5 instances of EnemyBug
are created. Each enemy bug shown on the screen has a class instance defining its behavior.
This class makes use of the SetRotation, SetFlip, and SetSpeed functions defined in the
ScrollObject base class.
OnCreate is called when the object is first created. We didn't define a constructor, so data
members must be initialized here.
In OnCreate, we query values in config without pushing the object's section first. That's okay,
because Scroll pushes the binding Orx object's config section as a convenience before calling
OnCreate.
We initialize our class members using the “custom” values we defined in config. While not
strictly necessary, this is good data-driven design. It means we can adjust these variables and
run again without recompiling.
OnDelete is called when the object is deleted. We must provide a body for the function, but it
does nothing in our case.
Update is called on every frame. This is the interesting part of EnemyBug. In our case, we
update its rotation and speed based on its currently direction of travel. 3)

ScrollObject Callbacks and Accessors

OnCreate, OnDelete, and Update are protected callbacks from the ScrollObject class.
That means these functions are called by Orx when these events occur on the object, allowing
you to easily override their behavior. You should never call these functions directly.
SetRotation, SetFlip, and SetSpeed are public accessors from the ScrollObject class.
You call them directly from other object class functions (and any other class can call them if it
has a pointer to the class instance). The accessors correspond to the similar orxObject_
functions (e.g. SetPosition == orxObject_SetPosition).

If you want to see all the accessors and callbacks available for overriding, see the ScrollObject
class interface in the ScrollObject.h file.

We've now programmed a much more interesting bug. If you run the game, however, you'll still see
nothing but still objects. That's because we haven't yet told Scroll that we want our enemy bug
objects to take on the behavior in our EnemyBug class. One step remains.

Telling Scroll about the Enemy Bug Class (Overriding
BindObjects)

The ScrollBindObject function accepts as a template parameter a class deriving from
ScrollObject. It accepts as a regular parameter an Orx config section name. Then it binds any
instance of the Orx object to the class.

Include EnemyBug.h after the inclusion of Object.h in binding-of-objects.cpp:

Last update: 2024/05/06 18:10 (11
months ago) en:tutorials:orxscroll:binding-orxscroll https://orx-project.org/wiki/en/tutorials/orxscroll/binding-orxscroll

https://orx-project.org/wiki/ Printed on 2025/03/30 06:14 (0 seconds ago)

#include "EnemyBug.h"

Add the following lines to binding_of_objects::BindObjects in BindingOfObjects.cpp after
the line for “Object”:

 // Bind the EnemyBug class to the O-EnemyBug config section
 ScrollBindObject<EnemyBug>("O-EnemyBug");

The order of calls to ScrollBindObject does not matter as long as all of the necessary bindings
occur in BindObjects.

The BindObjects function is called when the game starts. It basically says, “Whenever we create an
object of O-EnemyBug as defined in Orx config, make it take on all the behavior defined in the
EnemyBug class.”

Of course, the EnemyBug class must exist for this to work, which is why we made it first.

Run the game and you should see all your enemy bugs come to life.

Our Unfortunate Hero (Another Derived ScrollObject)

The bugs in our game must be very hungry! Let's add another bound object. First, add Hero.h to
your project and write its interface.

#pragma once

#include "Object.h"

class Hero : public Object
{
public:
protected:
 void OnCreate();
 void OnDelete();
 void Update(const orxCLOCK_INFO &_rstInfo);
 void OnCollide(ScrollObject *_poCollider, orxBODY_PART *_pstPart,
orxBODY_PART *_pstColliderPart, const orxVECTOR &_rvPosition, const
orxVECTOR &_rvNormal);

private:
 orxFLOAT m_movementSpeed;
};

Hero has a similar interface, but notice we've added an override for OnCollide. This function will be
called whenever Orx detects a physics collision between this object and another.

And add this code:

#include "Hero.h"

2025/03/30 06:14 (0 seconds ago) 9/11 The Binding of Objects in orx/Scroll

Orx Learning - https://orx-project.org/wiki/

void Hero::OnCreate()
{
 // Get movement speed from config value
 m_movementSpeed = orxConfig_GetFloat("MovementSpeed");
}

void Hero::OnDelete()
{
 // Do nothing when deleted
}

void Hero::Update(const orxCLOCK_INFO &_rstInfo)
{
 // Use movement input to initialize a vector to scale movement speed
 orxVECTOR speed = {
 // Vector's x component is right - left input strength. It will
 // be 0.0 if the inputs are either inactive or both equally active.
 orxInput_GetValue("MoveRight") - orxInput_GetValue("MoveLeft"),
 // Vector's y component is down - up input strength. It will
 // be 0.0 if the inputs are either inactive or both equally active.
 orxInput_GetValue("MoveDown") - orxInput_GetValue("MoveUp"),
 0.0};

 // Normalize the input vector if it has a length > 1
 if (orxVector_GetSquareSize(&speed) > 1.0)
 {
 orxVector_Normalize(&speed, &speed);
 }

 // Scale the raw input vector by the our movement speed
 orxVector_Mulf(&speed, &speed, m_movementSpeed);

 // Update our speed
 SetSpeed(speed, false);
}

void Hero::OnCollide(ScrollObject *_poCollider, orxBODY_PART *_pstPart,
orxBODY_PART *_pstColliderPart, const orxVECTOR &_rvPosition, const
orxVECTOR &_rvNormal)
{
 // Add flash effect
 AddFX("FX-Flash");
}

The code should be almost self-explanatory. The hero's movement speed will be pulled from its config
value. The update function (called every frame) sets the speed of the character based on what
keyboard arrow is pressed. The OnCollide function adds a “flash” effect to the character.

You have to modify the BindingOfObjects::BindObjects function to make it bind the new Hero
class to the O-Hero object. Otherwise, the Hero will not be bound to its class and will just stand still in

Last update: 2024/05/06 18:10 (11
months ago) en:tutorials:orxscroll:binding-orxscroll https://orx-project.org/wiki/en/tutorials/orxscroll/binding-orxscroll

https://orx-project.org/wiki/ Printed on 2025/03/30 06:14 (0 seconds ago)

the middle of the screen!

Try to do those things yourself. If you need help, though, here are the lines to add:

 // Bind the Hero class to the O-Hero config section
 ScrollBindObject<Hero>("O-Hero");

When you run the game, you'll be able to control the hero with the arrow keys. Be careful, the bugs
will bite him if he gets too close and the OnCollide callback will make him “flash” red.

What Now?

Well, you just finished making what could loosely be considered a game! Here are some additions you
could make.

Add a “Life” property to the Hero. Modify OnCollide so the Hero loses life each time he's hit.
Give him an untimely death when life reaches 0.
Give the Hero a weapon to fire at the bugs. The OnCollide callback for the enemy bugs can be
used to make them take damage from the weapon.
Be sure to add interesting death animations in the OnDelete callback.
Add a more interesting background, of course.

1)

Thanks to Daniel Cook of www.lostgarden.com for the great prototyping graphics
2)

Overriding OnCreate and OnDelete is required for any class deriving from ScrollObject
3)

http://www.lostgarden.com

2025/03/30 06:14 (0 seconds ago) 11/11 The Binding of Objects in orx/Scroll

Orx Learning - https://orx-project.org/wiki/

Why use SetSpeed and not SetPosition? Because the objects in this tutorial have physics bodies.
Calling SetPosition on objects with physics bodies messes up the physics simulation. If you want to
watch that happen, change SetSpeed to SetPosition and turn on physics debugging as described
in the config.

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/en/tutorials/orxscroll/binding-orxscroll

Last update: 2024/05/06 18:10 (11 months ago)

https://orx-project.org/wiki/
https://orx-project.org/wiki/en/tutorials/orxscroll/binding-orxscroll

	The Binding of Objects in orx/Scroll
	What is "Object Binding"?
	Trouble?
	Create a new Scroll Project
	Get the Config Ready
	Giving the Bugs a Brain (Deriving the ScrollObject Class)
	ScrollObject Callbacks and Accessors

	Telling Scroll about the Enemy Bug Class (Overriding BindObjects)
	Our Unfortunate Hero (Another Derived ScrollObject)
	What Now?

