2026/01/30 19:34 (0 seconds ago) 1/4 using-premake-for-your-own-project

How to use premake to create a build configuration for your
own project

Orx now provides a tool to do this for you. If you want a
hassle free way of spinning up your own Orx-based projects,
see the article: Creating your own Orx-based Project using
‘init’

If you wish to do this manually yourself, continue with the
article below.

This article will help you to create a project using the premake command supplied with Orx. These
instructions largely replace the more manual IDE setup instructions by Grey:Setup tutorials by Grey

Download the latest Orx from Github

See here for instructions on getting Orx downloaded.

Build the Orx project from Github

You downloaded Orx, but now you need to build it. And your project needs to use compiled files from
that Orx build. These steps are covered in this article. Follow steps: What is a build project?,
Creating your build and Compiling orx from scratch. Then you will have a compiled version of
orx for your chosen IDE / OS.

Gather parts for your project

Ensure you have the following suggested folder structure:

e myproject
o bin (an empty bin folder)
= windows (windows folder for windows exe(s) and dll(s). copy the *.dll files from
orx/code/lib/dynamic subfolder to here)
o build (empty build folder - copy the premake4.lua file from the orx/tutorial/build
folder to here)
o include (copy the contents of orx/code/include subfolder to here)
o lib (an empty lib folder)
= windows (copy the *.a files from orx/code/lib/dynamic subfolder to here)
o src (your source files)

In the windows folders above, if you are using linux, name your folders linux. Or have both if you are
doing multiplatform.

Make sure this folder structure is sitting next to the downloaded orx folder. If it is not, then copy paste

Orx Learning - https://orx-project.org/wiki/


https://orx-project.org/wiki/en/tutorials/projects/creating_your_own_project
https://orx-project.org/wiki/en/tutorials/projects/creating_your_own_project
https://orx-project.org/wiki/en/tutorials/community/grey
https://orx-project.org/wiki/en/orx/main
https://orx-project.org/wiki/en/tutorials/community/sausage/using-premake-to-create-build-projects

Last
update:
2025/09/30
17:26 (4
months
ago)

en:tutorials:projects:using-premake-for-your-own-project https://orx-project.org/wiki/en/tutorials/projects/using-premake-for-your-own-project?rev=1598882083

your myproject there now, so that orx and myproject are on the same level, ie:

/myproject/
/orx/

This will be required when the script is run. Parts of orx will be accessed to build out your project(s).
Once your project is built, you won't need orx there anymore if you don't want it.

Editing the premake4.lua file in order to make a build project

e Edit the premake4.lua file.

e Scroll to the line: “- Project: 02_Clock”

e Select from that line and remove all lines from here down to the very bottom, leaving just a
single project (Project: 01).

e Rename '- Solution: orx' to '- Solution: MySolution'

e Rename 'Solution “Tutorial”* to 'solution “MySolution

e Change 'language (“C")' to 'language (“C++")" if your project is written in c++. Otherwise leave
it as it is.

e Change the includedirs to just reflect your one includes folder

ni

includedirs
{

", ./include",
}

e Change the libdirs to just reflect your one lib folder:

libdirs
{

“../lib/windows" --or linux, whatever you're target platform is.
}

e Down into the project area, Rename '- Project: 01 _Object' to '- Project: MyProject’
e Change 'project “01_Object”' to 'project “Your Project™
e Change 'files {“../src/01_Object.c”}' to be one or more c, cpp or h files:

files {
"../src/filel.cpp",
"../src/filel.h",
"../src/file2.cpp",
"../src/file2.h",

}

or

files {
“../src/*.cpp",
"../src/*.h"

}

https://orx-project.org/wiki/ Printed on 2026/01/30 19:34 (0 seconds ago)



2026/01/30 19:34 (0 seconds ago) 3/4 using-premake-for-your-own-project

e Under files, add a target name for your executable:

targetname ("windows/myproject")

Generating the build project

e cd to your build folder (eg myproject/build)
e Call the premake4.exe from within your build folder with:

..\..\orx\extern\premake\bin\windows\premake4.exe --os=windows codelite
or just:
..\..\orx\extern\premake\bin\windows\premake4.exe codelite

(..\..\orx\extern\premake\bin in this example is the folder where you downloaded orx, we need to get
to the premake4.exe to do the work against our .lua file, and to save the result in our current folder)

e Your myproject\build\windows folder will contain a codelite folder containing your new project's
files.

If you wanted to build for linux (from within windows) you could do a:

..\..\orx\extern\premake\bin\windows\premake4.exe --os=linux codelite

e Open codelite and load your newly created workspace from your
myproject\build\windows\codelite folder.

e Add your data folder with your game assets, create your configuration files, etc.

¢ Build your project and play your game!

Notes

| have used codelite for windows as the example throughout. However there are many more IDE/OS
combos available. You can find a complete list from the latest premake here:
http://industriousone.com/what-premake or see what the current list is from the premake that ships
with orx by checking the “All operating systems, architectures, build projects” section here

Premake Template

myproject.zip

All of the above has been created in a pre-zipped folder structure if you just want to try it out.
However, you will still need to copy the correct files in place, ie the libraries, the includes, your source
and any ini configs / assets.

Troubleshooting

1. When running premake, you get: [string “local codelite = premake.codelite...”]:13: attempt to
index field 'cfg' (a nil value)

Orx Learning - https://orx-project.org/wiki/


http://industriousone.com/what-premake
https://orx-project.org/wiki/en/tutorials/community/sausage/using-premake-to-create-build-projects
https://orx-project.org/wiki/_media/tutorials/community/sausage/myproject.zip

Last
update:
2025/09/30
17:26 (4
months
ago)

en:tutorials:projects:using-premake-for-your-own-project https://orx-project.org/wiki/en/tutorials/projects/using-premake-for-your-own-project?rev=1598882083

Your premake4.lua file contains references to source files, but you didn't add any source files yet.
2. When compiling: fatal error: orx.h: No such file or directory
You forgot to copy orx's includes to your includes.

3. When compiling, if you get errors like... undefined reference to “vtable for
cxxabivl::si_class_type_info

You set the wrong language. Check if you want C++, your haven't set your solution to C.

4. When compiling, if you get errors like...
c:/mingw-4.6.1/bin/../lib/gcc/mingw32/4.6.1/../../../../mingw32/bin/ld.exe: cannot find -lorxd

Adjust your libfolder path in the premake4.lua file. You probably aren't pointing to the correct spot
(myproject/lib can't be found). Or you have nothing in your lib folder at all. Did you build orx and copy
the files from that lib folder to yours?

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/en/tutorials/projects/using-premake-for-your-own-project?rev=1598882083

Last update: 2025/09/30 17:26 (4 months ago)

https://orx-project.org/wiki/ Printed on 2026/01/30 19:34 (0 seconds ago)


https://orx-project.org/wiki/
https://orx-project.org/wiki/en/tutorials/projects/using-premake-for-your-own-project?rev=1598882083

	[How to use premake to create a build configuration for your own project]
	How to use premake to create a build configuration for your own project
	Download the latest Orx from Github
	Build the Orx project from Github
	Gather parts for your project
	Editing the premake4.lua file in order to make a build project
	Generating the build project
	Notes
	Premake Template
	Troubleshooting



