2026/01/14 05:26 (0 seconds ago) 1/9 Lighting tutorial

Lighting tutorial

Summary

This is tutorial shows how to use shaders for lighting with auto-generated normal maps.
NB: If you want to see how to use orx while using C++ for your game, please refer to the localization
tutorial.

As we are NOT using the default executable anymore for this tutorial, the tutorial code will be directly
built into the executable and not into an external library.

See previous basic tutorials for more info about basic object creation, clock handling, frames
hierarchy, animations, cameras & viewports, sounds & musics, FXs, physics, scrolling. C++
localization and spawner & shader.

This tutorial shows how to generate normal maps and use shaders for pixel-based lighting effects.
It's only one of the many possibilities of lighting you can achieve with shaders.

The code simply deals with an array of lights and allow to change some of their properties such as
position or radius.
The whole object lighting is done in the fragment shader defined in 12_Lighting.ini.

For performance sake, the normap maps are computed for each object's texture the first time the
object is loaded.

This computation is made on the CPU but it could have been done on the GPU using viewports that
would have textures as render target, instead of the screen.

Then all the objects would be rendered separately once with a shader which would only compute the
normal maps.

This technique would improve “loading/init” performances but requires more code to be written.

A more efficient way would be to batch the normal map creation: loading all the texture at once and
creating the associated normal maps in one pass.

We chose to do it on objects creations instead so as to keep this tutorial modular and allow new
objects to be added in config by users without any additional knowledge on how the textures will be
processed at runtime by the code.

Please note that the lighting shader is a very basic one, far from any realistic lighting, and has been
kept simple so as to provide a good base for newcomers.

Details

Let's begin with a quick look to our main function.
int main(int argc, char **argv

orx Executelargc, argv, Init, Run, Exit

Orx Learning - https://orx-project.org/wiki/

https://orx-project.org/wiki/en/tutorials/localization/locale
https://orx-project.org/wiki/en/tutorials/localization/locale
https://orx-project.org/wiki/en/tutorials/objects/object
https://orx-project.org/wiki/en/tutorials/clocks/clock
https://orx-project.org/wiki/en/tutorials/objects/frame
https://orx-project.org/wiki/en/tutorials/objects/frame
https://orx-project.org/wiki/en/tutorials/animation/anim
https://orx-project.org/wiki/en/tutorials/viewport/viewport
https://orx-project.org/wiki/en/tutorials/audio/sound
https://orx-project.org/wiki/en/tutorials/fx/fx
https://orx-project.org/wiki/en/tutorials/physics/physics
https://orx-project.org/wiki/en/tutorials/scrolling
https://orx-project.org/wiki/en/tutorials/localization/locale
https://orx-project.org/wiki/en/tutorials/localization/locale
https://orx-project.org/wiki/en/tutorials/spawners/spawner

Last update: 2025/09/30 17:26 (4 months ago) en:tutorials:shaders:lighting https://orx-project.org/wiki/en/tutorials/shaders/lighting

EXIT_SUCCESS

Nothing new here, we only execute orx using the helper orx_Execute function, providing three
callbacks: Init (), Run() and Exit().

Let's now have a glimpse to our Init () function.
orxSTATUS orxFASTCALL Init
orxSTATUS eResult = orxSTATUS SUCCESS

orxEvent AddHandler(orxEVENT TYPE SHADER, EventHandler
orxEvent AddHandler(orxEVENT TYPE TEXTURE, EventHandler

pstTextureTable = orxHashTable Create orxHASHTABLE KU32 FLAG NONE
orxMEMORY TYPE MAIN

pstViewport = orxViewport CreateFromConfig("Viewport"
pstScene = orxObject CreateFromConfig("Scene"

ClearLights

eResult

EventHandler () will listen for shader and object events.
There we'll populate shader parameters at runtime and create normal maps for new created object if
the corresponding normal map isn't already available.

A hashtable is then created for storing the normal maps.
Our traditional viewport/scene couple is also created and that's all we need to create.

ClearLights () is a very straightforward function that will clear all our light data.

As mentioned above, EventHandler () will listen to both shader and object events. Let's have a look
at it:

orxSTATUS orxFASTCALL EventHandler(const orxEVENT * pstEvent
orxSTATUS eResult = orxSTATUS SUCCESS

_pstEvent->eType orxEVENT TYPE_SHADER _pstEvent-=eID
orxSHADER EVENT SET PARAM

orxSHADER EVENT PAYLOAD *“pstPayload
pstPayload orxSHADER EVENT PAYLOAD *) pstEvent->pstPayload

pstPayload->s32ParamIndex 0rxS32)u32LightIndex

orxString Compare(pstPayload->zParamName, "UseBumpMap"

https://orx-project.org/wiki/ Printed on 2026/01/14 05:26 (0 seconds ago)

2026/01/14 05:26 (0 seconds ago) 3/9 Lighting tutorial

orxConfig PushSection(orxObject GetName(orxOBJECT(pstEvent->hSender
pstPayload->fValue orxConfig GetBool("UseBumpMap" orxFALSE
orxFLOAT 1 : orxFLOAT 0O
orxConfig PopSection

orxString Compare(pstPayload->zParamName, "vSize"

orxObject GetSize(orxOBJECT(pstEvent->hSender
pstPayload->vValue

orxString Compare(pstPayload->zParamName, "avLightColor"

orxVector Copy(&(pstPayload->vValue
astLightList|[pstPayload->s32ParamIndex|.stColor.vRGB

orxString Compare(pstPayload->zParamName, "afLightAlpha"

pstPayload->fValue
astLightList|pstPayload->s32ParamIndex|.stColor.fAlpha

orxString Compare(pstPayload->zParamName, "avLightPos"

orxVector Copy(&(pstPayload->vValue
astLightList|[pstPayload->s32ParamIndex|.vPosition

orxString Compare(pstPayload->zParamName, "aflLightRadius"

pstPayload->fValue
astLightList|pstPayload->s32ParamIndex|.fRadius

orxString Compare(pstPayload->zParamName, "NormalMap"

pstPayload->pstValue orxXxTEXTURE
orxHashTable Get(pstTextureTable
orxString ToCRC(orxTexture GetName(pstPayload->pstValue

When a orxSHADER EVENT SET PARAM is received, we check the parameter name and we'll fill its
content based on our stored light info.

Note that for arrays of parameters we use the array index to fill the right slot.

When the NormalMap parameter is requested, we'll try to find a precomputed normal map stored in
our pstTextureTable.

_pstEvent->eType orxEVENT TYPE_TEXTURE _pstEvent->eID
orxTEXTURE_EVENT LOAD

CreateNormalMap (orxTEXTURE(pstEvent->hSender

Orx Learning - https://orx-project.org/wiki/

Last update: 2025/09/30 17:26 (4 months ago) en:tutorials:shaders:lighting https://orx-project.org/wiki/en/tutorials/shaders/lighting

eResult

When a orxTEXTURE_EVENT LOAD event is caught, we'll create a normal map for the concerned
texture.

This means that a normal map for a given texture is created by calling CreateNormalMap () the first
time a texture is loaded.

Let's have a look to that function more closely.

void CreateNormalMap(const orxTEXTURE * pstTexture
const orxSTRING zName

zName orxTexture GetName(pstTexture
zName zName orxSTRING EMPTY

orxu32 u32CRC
u32CRC = orxString ToCRC(zName

We're using the CRC of the texture name as a key for our normal map table. If it's not already used
we need to create the associated normal map.

orxHashTable Get(pstTextureTable, u32CRC

orxFLOAT fWidth, fHeight

orxu32 u32BufferSize

orxBITMAP pstBitmap pstNMBitmap
OrxXTEXTURE “pstNMTexture

orxusg pu8SrcBuffer, *pu8DstBuffer
orxCHAR acNMName

pstBitmap orxTexture GetBitmap(pstTexture
orxDisplay GetBitmapSize(pstBitmap, &fWidth fHeight
u32BufferSize orxU32) (fWidth fHeight sizeof (orxRGBA

We now have the actual bitmap used by that texture.

pu8SrcBuffer = orxMemory Allocate(u32BufferSize
orxMEMORY TYPE VIDEO

pu8DstBuffer = orxMemory Allocate(u32BufferSize
orxMEMORY TYPE VIDEO

orxDisplay GetBitmapData(pstBitmap, pu8SrcBuffer, u32BufferSize
ComputeGreyImage (pu8SrcBuffer, u32BufferSize

We got the actual pixels and turned them into a black&white image by calling ComputeGreyImage *.

ComputeNormalMap (pu8SrcBuffer, pu8DstBuffer, (orxS32)fWidth
orxS32) fHeight

https://orx-project.org/wiki/ Printed on 2026/01/14 05:26 (0 seconds ago)

2026/01/14 05:26 (0 seconds ago) 5/9 Lighting tutorial

Based on that B&W image we generated the actual normal map calling ComputeNormalMap (). We'll
come back to this process later.

pstNMBitmap = orxDisplay CreateBitmap((orxU32)fWidth
orxU32) fHeight
orxDisplay SetBitmapData(pstNMBitmap, pu8DstBuffer, u32BufferSize

orxMemory Free(pu8SrcBuffer
orxMemory Free(pu8DstBuffer

orxString NPrint(acNMName “NM %s", zName

pstNMTexture = orxTexture Create
orxTexture LinkBitmap (pstNMTexture, pstNMBitmap, acNMName

orxHashTable Add(pstTextureTable, u32CRC, pstNMTexture

We then created a new texture with the prefix NM_ and filled it with our normap map image.
Finally we stored that texture in the table using the CRC of the original texture's name as a key.

Let's now go to the actual normal map creation process.

void ComputeNormalMap(const orxU8 * pu8SrcBuffer, orxU8 * pu8DstBuffer
orxS32 s32Width, orxS32 s32Height

orxS32 i, j
i i < s32Height; i
] j _s32Width; j
0rxS32 s32Index, s32Left, s32Right, s32Up, s32Down
orxFLOAT fLeft, fRight, fUp, fDown
orxCOLOR stNormal
orxu32 u32Pixel

const orxVECTOR vHalf orx2F(0.5f orx2F(0.5f orx2F(0.5f

/* Gets pixel's index */
s32Index i * s32Width j sizeof (orxRGBA

/* Gets neighbour indices */

s32Left i * s32Width + orxMAX(j sizeof (orxRGBA
s32Right 1 © s32Width + orxMIN(j _s32Width

sizeof (orxRGBA
s32Up orxMAX(i ~s32Width + j sizeof (orxRGBA
s32Down orxMIN(1i ~S32Height ~s32Width + j

sizeof (orxRGBA

Orx Learning - https://orx-project.org/wiki/

Last update: 2025/09/30 17:26 (4 months ago) en:tutorials:shaders:lighting https://orx-project.org/wiki/en/tutorials/shaders/lighting

/* Gets their normalized values */

fLeft _pu8SrcBuffer|s32Left orxCOLOR NORMALIZER
fRight _pu8SrcBuffer|s32Right orxCOLOR NORMALIZER
fUp _pu8SrcBuffer|s32Up orxCOLOR NORMALIZER

fDown _pu8SrcBuffer|s32Down orxCOLOR NORMALIZER

/* Gets normal as color */

orxVector Add(&stNormal.vRGB, orxVector Mulf(&stNormal.vRGB
orxVector Set(&stNormal.vRGB, (fLeft - fRight), fDown - fUp, orx2F(0.5f
orx2F(0.5f vHalf

stNormal.fAlpha = orxFLOAT 1

/* Gets pixel value */
u32Pixel = orxColor ToRGBA(&stNormal

/* Stores it */

_pu8DstBuffer|s32Index orxRGBA R(u32Pixel
_pu8DstBuffer|s32Index orxRGBA G(u32Pixel
_pu8DstBuffer|s32Index orxRGBA B(u32Pixel
_pu8DstBuffer|s32Index orxRGBA A(u32Pixel

In this function, for every pixels, we look at its direct vertical and horizontal neighbors.

We then use the difference in their shade of greys to determine a normal for that pixel.

Finally we make sure every component is in the range [0, 1] instead of [-1, 1] by dividing its value by
two and adding 0.5.

The reverse operation will then be done in the shader to “unpack” the normal.

The last step is to store that pixel that now contains our normal information in our image.

That's all for the source code. We'll now have a look at the config part.

We'll actually bypass all the usual object, graphic, input and spawner declarations as there's nothing
new here compared to the previous tutorials.
Instead, let's focus on the shader code that's stored there.

LightShader
Code !

First we define the shader's code:
vec2 GetLightVector(int iIndex
vec2((avLightPos| iIndex!.x - gl FragCoord.Xx fScreenSize, 1.0
avLightPos| iIndex!.y + gl FragCoord.y fScreenSize
We're simply getting the normalized vector from the current pixel to one of the lights here.

vec3 GetNormal

https://orx-project.org/wiki/ Printed on 2026/01/14 05:26 (0 seconds ago)

2026/01/14 05:26 (0 seconds ago) 7/9 Lighting tutorial

vec3 vNormal
const vec3 vHalf vec3(0.5

vNormal = texture2D(NormalMap, gl TexCoord .Xy).rgb
vNormal 2.0 vNormal vHalf

vNormal

That function “unpacks” the normal so that each component is now in the range [-1, 1]
vec4 GetLightValue(int iIndex, vec3 vNormal

float fIntensity, fBump
vec4 vValue

vec2 vLight = GetLightVector(ilIndex

fIntensity = clamp(1.0 1.0 afLightRadius| iIndex
afLightRadius| iIndex length(vLight), 0.0, 1.0

UseBumpMap 0.0

fBump = dot(normalize(vec3(vLight, 0.1 ~vNormal

fBump 1.0
vValue = fIntensity * vec4(fBump * avLightColor| iIndex
afLightAlpha! iIndex
vValue
This function gets the light contribution from a light. If bump mapping is active for that pixel, the
actual lighting is modulated according to the pixel's normal.
void main
vec4d vColor, vPixel
vec3 vNormal
int i
const int iLightNumber

vColor vec4(0.0, 0.0, 0.0, 0.0

vPixel = texture2D(Texture, gl TexCoord XYy

Orx Learning - https://orx-project.org/wiki/

Last update: 2025/09/30 17:26 (4 months ago) en:tutorials:shaders:lighting https://orx-project.org/wiki/en/tutorials/shaders/lighting

UseBumpMap 0.0

vNormal GetNorma'l

vNormal vec3(0.0

i =0, i < iLightNumber; 1

vColor GetLightValue(i, vNormal

vColor.rgb vAmbient

gl FragColor.rgb vPixel.rgb * vColor.rgb
gl FragColor.a vPixel.a - vColor.a

Here we simply accumulate all the ligth contributions for a pixel and output the final color value.

Now comes the list of parameters for this shader. Their type ? is defined by the type of initial value we
provide for them.

ParamList Texture # NormalMap # fScreenSize # vAmbient # avLightPos
afLightRadius # avLightColor # afLightAlpha # UseBumpMap # vSize
fScreenSize @isplay.ScreenHeight

vAmbient 0.05, 0.05, 0.05

avLightPos 0o, 0, 0) # (06, 0, 0) # (0, 0, 0) # (0, 0, 0) # (0, 0, O
(0, 0, 0) # (0, 0, 0) # (0, 0,) # (0, 0,) # (0, 0, ©

afLightRadius 0.0 # 0.0 # 0.0 # 0.0 # 0.0 # 0.0 # 0.0 # 0.0 # 0.0 # 0.0
avLightColor 0, 0, 0) # (0, 0, 0) # (0, 0, 0) # (0, 0, O) # (0, 0, O
(0, 0, 0) # (0, O, O) # (0, 0, O) # (0, 0, O) # (0, 0, O

afLightAlpha 0.0 # 0.0 # 0.0 # 0.0 # 0.0 # 0.0 # 0.0 # 0.0 # 0.0 # 0.0
UseBumpMap 1.0

vSize 0, 0, 0

This is the list of all the parameters used by the shader. As you can see, values for arrays are
provided through a config list.

Resources

Source code: 12 _Lighting.c

Config file: 12_Lighting.ini

1)

which does a very simple conversion if you look at its code

https://orx-project.org/wiki/ Printed on 2026/01/14 05:26 (0 seconds ago)

https://github.com/orx/orx/blob/master/tutorial/src/12_Lighting.c
https://github.com/orx/orx/blob/master/tutorial/bin/12_Lighting.ini

2026/01/14 05:26 (0 seconds ago) 9/9 Lighting tutorial

2)

vector3, float or texture

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/en/tutorials/shaders/lighting

Last update: 2025/09/30 17:26 (4 months ago)

Orx Learning - https://orx-project.org/wiki/

https://orx-project.org/wiki/
https://orx-project.org/wiki/en/tutorials/shaders/lighting

	Lighting tutorial
	Summary
	Details
	Resources

