2026/01/28 08:44 (0 seconds ago) 1/10 Fun with Text and Shaders

Fun with Text and Shaders

Summary

In this tutorial, we're going to import a font to be used with your Orx game, and play some advanced
tricks with it using our favorite image editor and some shaders! You can find the source code in this
git repo, the commits in that repo follow the order of the tutorial sections.

Importing the Font

We start by downloading a font (.ttf) to be used with our game. For this tutorial, I've chosen the free
Pleasantly Plump Font.

e We put it into the same folder with the orxFontGen tool that resides in <Your 0rx
Home>/tools/orxFontGen folder
 Create a file called Characters.txt in the same folder and write the following in it:

ABCDEFGHIJKLMNOPQRSTUVWXYZ !?, .
e Call the following terminal command in that folder:

./orxfontgen -t Characters.txt -s 40 --font "PLUMP.ttf" -o plump -a

Now, let's see what we've got:
e A plump.ini file that contains:

plump
CharacterList " I, .?7ABCDEFGHIJKLMNOPQRSTUVWXYZ"
CharacterWidthList 19 # 15 # 10 # 11 # 30 # 36 # 35 # 33 # 36 # 29 # 29 #
34 # 36 # 19 # 33 # 35 # 31 # 41 # 37 # 36 # 33 # 36 # 34 # 31 # 32 # 38 #
35 # 51 # 36 # 36 # 33
CharacterHeight = 40.000000
CharacterSpacing 2, 2, 0
Texture = plump.png

e And a plump.png file that looks like (Don't try to save that image and use it in your game,
I've added a background to it so that it's visible in this page. If you're too lazy to call the
command above, download the image from here instead):

Orx Learning - https://orx-project.org/wiki/

https://github.com/enobayram/orx_text_and_shader_tutorial
https://github.com/enobayram/orx_text_and_shader_tutorial
http://www.fontsquirrel.com/fonts/Pleasantly-Plump
https://orx-project.org/wiki/en/orx/config/settings_structure/orxtext#orxfontgen
http://orx-project.org/wiki/_media/tutorials/community/enobayram/plump.png

hfgrt]tl:gd:;i:) 2025/09/30 17:26 (4 en:tutorials:shaders:text_and_shaders https://orx-project.org/wiki/en/tutorials/shaders/text_and_shaders

These two files are all you need to use this font in your game, copy them to somewhere your game
can find them. Important note: plump.ini file indicates that the font Texture is plump.png,
which means that plump.png is at the root of your data folder!

Now we can use this font in our game, just add the following somewhere in your .ini files:

;We need to include the generated font .ini file
@plump.ini@

| TextObject]

Graphic = TextGraphic

| TextGraphic]

Text = TextWithCustomFont
Pivot = center
[TextWithCustomFont]

String = HELLO WORLD!!
Font = plump ; This is where we tell Orx to use the custom font

Here's the result:

Text and Shaders Tutorial — x

HNELLO WORLODY

https://orx-project.org/wiki/ Printed on 2026/01/28 08:44 (0 seconds ago)

https://orx-project.org/wiki/_detail/tutorials/community/enobayram/plump_with_transparency.png?id=en%3Atutorials%3Ashaders%3Atext_and_shaders
https://orx-project.org/wiki/_detail/tutorials/community/enobayram/text_and_shader_hello_world.png?id=en%3Atutorials%3Ashaders%3Atext_and_shaders

2026/01/28 08:44 (0 seconds ago) 3/10 Fun with Text and Shaders

This is the code so far.

Playing with the Font

Now the fun begins! No one says that we're not allowed to play with plump. png, so we're just going
to edit it with GIMP to add some borders to the text! This is not an image manipulation tutorial, so I'll
just summarize:

e Open plump.png with GIMP

e Use “Select by Color” tool to select the transparent areas
¢ Selection-Invert Selection

¢ Selection—-Shrink Selection 1 pixel

e Edit-Stroke Selection

Anyway, the result is (The download link as before):

' Q‘rg*l.‘w-x !.

I I.I.I.I.I.I.I.I.I.I.I.I.I.I.I
/il BB EEEEEENENENBDBN,
Al BN EEEEEENEDR
< I B B EEEEENEENNBNBDB,

And this is how it looks in the game:

Text and Shaders Tutorial - X

HELLO WOoRLOD"

Nice! This is the code so far.

Orx Learning - https://orx-project.org/wiki/

https://github.com/enobayram/orx_text_and_shader_tutorial/tree/ImportingTheFont
http://orx-project.org/wiki/_media/tutorials/community/enobayram/plump_with_border_original.png
https://orx-project.org/wiki/_detail/tutorials/community/enobayram/plump_with_border.png?id=en%3Atutorials%3Ashaders%3Atext_and_shaders
https://orx-project.org/wiki/_detail/tutorials/community/enobayram/text_and_shader_hello_world_border.png?id=en%3Atutorials%3Ashaders%3Atext_and_shaders
https://github.com/enobayram/orx_text_and_shader_tutorial/tree/PlayingWithTheFont

Last update: 2025/09/30 17:26 (4
months ago)

Changing the Border and Fill Colors Independently

en:tutorials:shaders:text_and_shaders https://orx-project.org/wiki/en/tutorials/shaders/text_and_shaders

See, this tutorial is about things nobody told us we couldn't do :)

At this stage, we want to be able to change the text border and fill colors independently, but we've
baked the border color into our font texture. This is where our custom shaders come into play.

Now, take a look at the original generated font texture again:

It's a 32 bit RGBA image that just conveys the information of a 1bit image! So much wasted potential.
In fact, we could just drop all the color values and fulfill the job of the font texture with just the alpha
channel. Let's do that; open the original plump.png in GIMP and paint it all black (Note that | didn't
bother myself with the transparency image this time since the image is visible as it is, so you can just
download this image if you like):

.. 2ABCO
EFGHNIVKL
MNOPQRS
TUOVWRY
r

Now, if we run the game, the text will appear in black, but that's not what we want; we want it to
function as before, ignoring the texture color, so we need to write a custom shader that will do that:

TextObject

Graphic = TextGraphic
ShaderList TextShader ; NEW
Color 255,255,255) ; NEW

TextShader
ParamList texture
Code !
void main() {

https://orx-project.org/wiki/ Printed on 2026/01/28 08:44 (0 seconds ago)

https://orx-project.org/wiki/_detail/tutorials/community/enobayram/plump_with_transparency.png?id=en%3Atutorials%3Ashaders%3Atext_and_shaders
https://orx-project.org/wiki/_detail/tutorials/community/enobayram/plump_black.png?id=en%3Atutorials%3Ashaders%3Atext_and_shaders

2026/01/28 08:44 (0 seconds ago) 5/10 Fun with Text and Shaders

// Get the texture value for the current pixel
vecd tex = texture2D(texture, gl TexCoord[0].xy);

// Set the pixel color value to the object's color value
gl FragColor.rgb = gl Color.rgb;

// Set the pixel alpha to the texture's alpha multiplied by the object's
gl FragColor.a = tex.a * gl Color.a;
}II

And the output is exactly the same as before:

Text and Shaders Tutorial — x

HNELLO WORLODY

So, what did we gain by this? Now we have 3 color channels that we can do anything we want with!!!
So we'll use the red channel to carry the border information. We'll edit plump.png the same way we
did in the Playing with The Font section except that we'll be stroking with red:

..2ABCO
EFGHIVKL
MNOPQRS
TUVWaRY
z

If you run the game now, you'll see no trace of the border since we're ignoring the RGB of the texture
now!

Let's improve our shader to take advantage of the border information:

[TextShader|

Orx Learning - https://orx-project.org/wiki/

https://orx-project.org/wiki/_detail/tutorials/community/enobayram/text_and_shader_hello_world.png?id=en%3Atutorials%3Ashaders%3Atext_and_shaders
https://orx-project.org/wiki/_detail/tutorials/community/enobayram/plump_red_border.png?id=en%3Atutorials%3Ashaders%3Atext_and_shaders

Last update: 2025/09/30 17:26 (4

months ago) en:tutorials:shaders:text_and_shaders https://orx-project.org/wiki/en/tutorials/shaders/text_and_shaders

ParamList = texture # BorderColor ; We've added a new parameter
Code = "
void main() {

// Get the texture value for the current pixel

vecd tex = texture2D(texture, gl TexCoord[0O].xy);

// Here's the fun; We blend in the border color based on R channel
gl FragColor.rgb = mix(vec3(1.0), BorderColor, tex.r) * gl Color.rgb;

// Set the pixel alpha to the texture's alpha multiplied by the object's
gl FragColor.a = tex.a * gl Color.a;

}II

BorderColor = (0,0,255) ; Let's make the border blue, just for fun.

Here's the result:

Text and Shaders Tutorial — x

HELLO WORLO"

Now we can change the text border color in config.

Here's the code so far, and here's what we've changed.

llluminating the Text with a Light!

So far, we've been using the red and alpha channels of the font texture, we still got two more color
channels that we can have a lot of fun with :) One application | could think of for utilizing those two
channels was illuminating the text as if it were embossed.

To that end, we're going to edit plump.png in GIMP to occupy the green and blue channels with the
surface normals of an embossing. If you're really interested in how we're going to do this, expand the
following section, but otherwise, you know I'm going to give you the result anyway :)

So, we again open up plump.png in GIMP and in summary, do the following:

https://orx-project.org/wiki/ Printed on 2026/01/28 08:44 (0 seconds ago)

https://orx-project.org/wiki/_detail/tutorials/community/enobayram/text_and_shaders_blue_border.png?id=en%3Atutorials%3Ashaders%3Atext_and_shaders
https://github.com/enobayram/orx_text_and_shader_tutorial/tree/IndependentBorderColor
https://github.com/enobayram/orx_text_and_shader_tutorial/commit/e68e6620c7be330e42f2bf200ef3a4eeb6087937

2026/01/28 08:44 (0 seconds ago) 7/10 Fun with Text and Shaders

¢ Select by color - Click on empty area

e Selection - Inverse

* Create a new layer while keeping the selection and call it “BumpMap”

¢ Change the layer mode to “Addition”

¢ While the selection is still active, use the gradient tool with primary color = white, secondary
color = black, and with a gradient type of “Shaped”.

At this point, we've created a bump map for our glyphs. Think of this image as a height map. To be
able to use this height map for illumination, we actually need its gradient in x and y directions.
Briefly, the gradient of an image in x is the image that shows its rate of change at any point when we
move in the x direction.

To obtain the gradient images, we'll do in GIMP:

e Duplicate the “BumpMap” layer, call it “GradientX”
e Filters » Generic -» Convolution Matrix

o Jlo Jlo Jlo Jlo |
o Jlo Jlo Jlo Jlo |
o Jr Jlo Jlo Jlo |
o Jlo Jlo Jlo Jlo |
 Use an offset value of 127, and a matrix that looks like: [D l [D l [D l [D l [D l

e Color - Curves
¢ Remove the red and blue channels by zeroing their curves.
e Now duplicate the “BumpMap” layer again, this time calling it “GradientY”

o Jlo Jlo Jlo Jlo |
o Jlo Jir Jlo Jlo |
o Jlo Jlo Jlo Jlo]
o Jlo Jla Jlo Jlo |
¢ Follow the same steps as those for “GradientX” but use [D] [D] [D] [D] [D] as

the matrix, and remove the red and green channels this time.
¢ Finally, make the “BumpMap” layer invisible and export the image as plump.png

Now we have a new plump.png that has the text border at its R channel, surface normal X on its G
channel and surface normal Y on its B channel; here's how it looks:

‘.. 2ABC0O
EFGHIVKL
MNROPORS
TUVWxY
z

Orx Learning - https://orx-project.org/wiki/

https://en.wikipedia.org/wiki/Gradient
https://orx-project.org/wiki/_detail/tutorials/community/enobayram/gradxmatrix.png?id=en%3Atutorials%3Ashaders%3Atext_and_shaders
https://orx-project.org/wiki/_detail/tutorials/community/enobayram/gradymatrix.png?id=en%3Atutorials%3Ashaders%3Atext_and_shaders
https://orx-project.org/wiki/_detail/tutorials/community/enobayram/plump_border_normal.png?id=en%3Atutorials%3Ashaders%3Atext_and_shaders

Last update: 2025/09/30 17:26 (4
months ago)

en:tutorials:shaders:text_and_shaders https://orx-project.org/wiki/en/tutorials/shaders/text_and_shaders

Now we need to make use of these new channels in our texture shader:

| TextShader |
ParamList = texture # BorderColor # LightPos # LightColor

Code

void main() {

// Get the texture value for the current pixel
vec4d tex = texture2D(texture, gl TexCoord[0O].xy);

// Here's the fun; We blend in the border color based on R channel
gl_FragColor.rgb = mix(vec3(1.0), BorderColor, tex.r) * gl _Color.rgb;

// Let's derive the surface normal from the green and blue channels
vec3 normal = normalize(vec3(tex.g-0.5, tex.b-0.5, 0.5));

// Let's find the unit vector pointing from this pixel towards the light
vec3 light dir = normalize(LightPos-gl_FragCoord.xyz) ;

// The illumination of a Lambertian surface is the dot product
// of the surface normal and the unit vector towards the light
float illumination = max(0.0, dot(normal, light dir));

// Let's apply the light color and the illumination
gl FragColor.rgb *= LightColor * illumination;

// Set the pixel alpha to the texture's alpha multiplied by the object's
gl_FragColor.a = tex.a * gl_Color.a;

BorderColor = (0,0,255) ; Let's make the border blue, just for fun.
LightPos = (200,150,100) ; The light is at the center of the screen
LightColor = (1,0.7,0.7) ; Reddish light source

Let's see how that looks:

https://orx-project.org/wiki/ Printed on 2026/01/28 08:44 (0 seconds ago)

2026/01/28 08:44 (0 seconds ago) 9/10 Fun with Text and Shaders

Text and Shaders Tutorial - %

Great! Now a reddish light source is illuminating our greeting text.

Here's the code so far, and here's what we've changed.

BONUS! Interactive Light

I've finally gone one step further and downloaded a light bulb image to create a light bulb object that
follows the mouse. The text shader's light source also follows the mouse resulting in a nice interactive
embossed text illumination demo. The things I've done for this step is out of the scope of this tutorial,
but the code is in the repository. Here's a video:

Text and Shaders Tutorial D

This is all the code, and this is what we needed to add to make the demo interactive.

Orx Learning - https://orx-project.org/wiki/

https://orx-project.org/wiki/_detail/tutorials/community/enobayram/text_and_shader_embossed.png?id=en%3Atutorials%3Ashaders%3Atext_and_shaders
https://github.com/enobayram/orx_text_and_shader_tutorial/tree/IlluminatingText
https://github.com/enobayram/orx_text_and_shader_tutorial/commit/8a1b8bedec5256cc07707eec71d5b289302bd904
https://en.wikipedia.org/wiki/Idea#/media/File:Crystal_Clear_app_ktip.svg
https://orx-project.org/wiki/_detail/tutorials/community/enobayram/text_and_shader_demo.gif?id=en%3Atutorials%3Ashaders%3Atext_and_shaders
https://github.com/enobayram/orx_text_and_shader_tutorial
https://github.com/enobayram/orx_text_and_shader_tutorial/commit/4b5208dd7efd5d562b54ace76751d97ec3d74ce0

Ir_r?E:\tL:wzd:gtg; 2025/09/30 17:26 (4 en:tutorials:shaders:text_and_shaders https://orx-project.org/wiki/en/tutorials/shaders/text_and_shaders

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link:
https://orx-project.org/wiki/en/tutorials/shaders/text_and_shaders

Last update: 2025/09/30 17:26 (4 months ago)

https://orx-project.org/wiki/ Printed on 2026/01/28 08:44 (0 seconds ago)

https://orx-project.org/wiki/
https://orx-project.org/wiki/en/tutorials/shaders/text_and_shaders

	Fun with Text and Shaders
	Summary
	Importing the Font
	Playing with the Font
	Changing the Border and Fill Colors Independently
	Illuminating the Text with a Light!
	BONUS! Interactive Light

