2026/02/02 08:20 (0 seconds ago) 1/12 aplicacién_standard

Tutorial de Ejecutable Independiente

Sumario

Este es nuestro primer tutorial basico de C++. También muestra como escribir un ejecutable
independiente usando orx y como usar el médulo de localizacién (orxLOCALE).

Como NO estamos usando el ejecutable por defecto para este tutoriales, su cédigo sera directamente
compilado en un ejecutable y no dentro de una libreria externa.

Esto implica que NO tendremos comportamiento codificado por defecto que tuvimos en los tutoriales
anteriores:

F11 no afectara el cambiador de sincronia vertical.

Escape no saldra de la aplicacién automaticamente.

F12 no captura una imagen

Backspace no recarga ficheros de configuracién

La seccién [Main] en el fichero de configuracion no serad usada para cargar un plugin (GameFile
llave)

Un programa basado directamente en orx ”, por defecto, NO saldra de la aplicacién si recibe el
evento orxSYSTEM_EVENT_CLOSE.

Para hacer esto, o tendriamos que usar la funcién auxiliar orx_Execute() (ver debajo) o manejarlo
por nuestra cuenta.

Ver los anteriores tutoriales basicos para mas informacion sobre la creacion basica de objetos,
manejo del reloj, jerarquia de fotogramas, animaciones, camaras & vistas, musica & sonido,
efectos(FXs), fisica y desplazamiento.

Como estamos por nuestra cuenta aqui, necesitamos escribir la funcidn principal e inicializarla
manualmente con orx.

Lo parte buena es que podemos entonces especificar que mddulo queremos usar, y desactivar la
pantalla o cualquier otro mddulo a voluntad, si fuera necesario.

Si quisieramos mantener una semi automatica inicializacién de orx, podemos usar la funcién
orx_ Execute().

Este tutorial cubrird el uso de orx con su funcién auxiliar, pero puedes decidir si no la usas su su
comportamiento no sirve para tus necesidades.

Esta funcién auxiliar tendrd cuidado de inicializar todo correctamente y salir adecuadamente.

Estara también segura que el médulo del reloj esta marcando constantemente (como parte del ndcleo
de orx) y que podamos salir si el evento orxSYSTEM _EVENT_CLOSE fue enviado.

Este evento es enviado cuando cerramos una ventana, por ejemplo, pero puede ser enviado por
criterio propio (la tecla escape es presionado, por ejemplo).

Este cddigo es un ejemplo basico de C++ para mostrar como usar orx sin tener que escribir codigo de
C.

Este tutorial pudo haber estado mejor estructurado de una mejor manera (cortandolo en piezas con
encabezados de ficheros, por ejemplo) pero queremos mantener un solo fichero por tutorial *basico*.

Orx Learning - https://orx-project.org/wiki/

https://orx-project.org/wiki/es/orx/tutorials/standalone#details
https://orx-project.org/wiki/es/orx/tutorials/main#basic
https://orx-project.org/wiki/es/orx/tutorials/object
https://orx-project.org/wiki/es/orx/tutorials/clock
https://orx-project.org/wiki/es/orx/tutorials/frame
https://orx-project.org/wiki/es/orx/tutorials/anim
https://orx-project.org/wiki/es/orx/tutorials/viewport
https://orx-project.org/wiki/es/orx/tutorials/sound
https://orx-project.org/wiki/es/orx/tutorials/fx
https://orx-project.org/wiki/es/orx/tutorials/physics
https://orx-project.org/wiki/es/orx/tutorials/scrolling

Last update:
2025/09/30
17:26 (4
months ago)

es:orx:tutorials:aplicacién_standard https://orx-project.org/wiki/es/orx/tutorials/aplicaci%C3%B3n_standard?rev=1331135261

Este ejecutable independiente también crea una consola (como hace el ejecutable de orx por
defecto), pero tu puedes tener tu propio programa sin consola si asi lo deseas.
A fin de lograr eso, solo necesitas proveer un listado de argumentos que contenga el nombre del

ejecutable.
Si no, el fichero cargado por defecto sera orx.ini en vez del que esta basado en el nombre de nuestro

ejecutable (ej. 10_StandAlone.ini).

Los usuarios(windows) de Visual Studio, facilmente pueden lograr esto escribiendo una funcion
WinMain() en vez de main(), y obteniendo el nombre del ejecutable (o hacerlo a mano, como se

()
hace sin pudor en este tutorial)

Este tutorial simplemente muestra el logo de orx y una leyenda localizada. Presione espacio o el
botdn click izquierdo para pasar por todas las lenguas disponibles para la leyenda del texto.

Algunas explicaciones acerca de elementos del nlcleo puedes encontrarlas en este tutorial:

e Funcion correr(Run function): No ponga *ningun* codigo logico aqui, es solo en la
columna vertebral donde puedes manejar por defecto los comportamientos del
nucleo(rastreando la salida o cambiando la localizacién, poer ejemplo) o perfilar algunas cosas.
Como esto es llamado llamado directamente desde un ciclio principal y no como parte del reloj
del sistema, la consistencia en el tiempo no se puede imponer. Para todas las ejecuciones
principales de tu juego, por favor crea un reloj(o usa uno existente) y registra tu llamada de
retorno(callback) a el.

e Controladores de Evetos(EventHandlers): Cuando un controlador de evento retorna
orxSTATUS_SUCCESS, ningun otro controlador sera llamado después de el por el mismo evento.
En la otra mano, si orxSTATUS_FAILURE, es retornado, el procesamiento de eventos continuara
durante ese evento si los controladores de otros estan escuchando este tipo de evento. Vamos
a supervisar los eventos de localizacidon para actualizar el texto de nuestra leyenda, cuando el
idioma seleccionado se cambia.

e orx_Execute(): Inicia y ejecuta orx usando nuestra propia funcién definida(Init, Run y Exit).
Podemos, claro, no usar este auxiliar y controlar todo manualmente, si este comportamiento no
suple nuestras necesidades. Puedes echar un vistazo al contenido de orx_Execute() ? para
tener una mejor idea en como se hace esto.

Detalles

Empecemos con los includes.
#include "orx.h"

Eso es todo lo que necesitas para incluir a fin de utilizar orx. Este include trabaja igualmente con un
compilador de C o C++ 2.

Veamos ahora a nuestra clase Independiente(StandAlone) que contiene las llamadas de retorno
de orx, Init (), Run(), Exit().

https://orx-project.org/wiki/ Printed on 2026/02/02 08:20 (0 seconds ago)

http://http://es.wikipedia.org/wiki/Visual_Studio

2026/02/02 08:20 (0 seconds ago) 3/12 aplicacién_standard

class StandAlone

public:
static orxSTATUS orxFASTCALL EventHandler(const orxEVENT * pstEvent);
static orxSTATUS orxFASTCALL Init();
static void orxFASTCALL Exit();
static orxSTATUS orxFASTCALL Run();

void SelectNextLanguage!();

StandAlone : m_poLogo(NULL), s32LanguagelIndex ;
~StandAlone ;

private:
orxSTATUS InitGame() ;

Logo *m polLogo;
orxS32 s32Languagelndex;

’

Todas las llamadas de retorno pueden actualmente haber sido definidas fuera de cualquier clase. Esto
es hecho justamente aqui para mostrar como hacerlo si lo necesitaras luego.

Podemos ver que nuestra clase StandAlone también contiene nuestro objeto Logo y un indice para
el correspondiente idioma seleccionado.

Echemos un vistazo a la definicién de nuestra clase Logo.
class Logo

private:
orxOBJECT *m pstObject;
orxOBJECT *m pstlLegend;

public:
Logo();
~Logo();

’

Nada fantasioso aqui, tenemos una referencia a un orxOBJECT que sera nuestro logo y otro mas que
sera para mostrar la leyenda localizada.

Como puedes ver no usamos una referencia a todo en este ejecutable, que acabamos de
mantenerlos, a fin de mostrar una correcta limpieza cuando nuestro objeto Logo es destruido. Si no
gueremos hacerlo manualmente, orx tendra cuidado de eso de todas formas cuando cerremos.

Veamos ahora su constructor.
Logo: :Logo

m pstObject = orxObject CreateFromConfig("Logo");
orxObject SetUserData(m pstObject, this);

Orx Learning - https://orx-project.org/wiki/

Last update:
2025/09/30
17:26 (4
months ago)

es:orx:tutorials:aplicacién_standard https://orx-project.org/wiki/es/orx/tutorials/aplicaci%C3%B3n_standard?rev=1331135261

m_pstLegend = orxObject CreateFromConfig("Legend");

Como hemos visto en tutoriales anteriores creamos nuestros dos objetos (Logo y Leyenda) y
enlazamos nuestro Objeto C++ Logo a su equivalente en orx usando orxObject SetUserData().

Logo: :~Logo

orxObject Delete(m pstObject);
orxObject Delete(m pstLegend);

Facil de limpiar aqui, ya que solo elimina los dos objetos.

Veamos ahora nuestra funcién principal.
int main(int argc, char **argv

orx Executelargc, argv, StandAlone::Init, StandAlone::Run,
StandAlone: :Exit);

EXIT_SUCCESS;

Como podemos ver, estamos usando el auxiliar orx Execute() que inicializara y ejecutara orx por
nosotros.

Con el fin de hacer esto, necesitamos proveerle el nombre de nuestro ejecutable y los parametros de
linea de comando, junto con tres devoluciones de llamada de: Init (), Run() y Exit().
Solo saldremos de esta funcién auxiliar cuando orx termine.

Tengamos un pequeno vistazo a la versidon de consola para windows.
#ifdef orxMSVC

int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR
lpCmdLine, int nCmdShow

// Inits and executes orx
orx WinExecute(StandAlone::Init, StandAlone::Run, StandAlone::Exit);

// Done!
EXIT_SUCCESS;

#endif

Lo mismo que para la tradicional version main() excepto que usamos el auxiliar orx_WinExecute
que calculard los pardmetros correctos en la linea de comandos y los usara. ¥

https://orx-project.org/wiki/ Printed on 2026/02/02 08:20 (0 seconds ago)

2026/02/02 08:20 (0 seconds ago) 5/12 aplicacién_standard

Esto solo funciona para un juego en windows sin consola °.
Veamos ahora como luce nuestro codigo de Init().
orxSTATUS StandAlone::Init

orxLOG("10 StandAlone Init() called!");

soMyStandAloneGame.InitGame() ;

Simplemente inicializaremos nuestra instancia StandAlone llamando a su método InitGame().
Veamos su contenido.

orxEvent AddHandler(orxEVENT TYPE LOCALE, EventHandler);
m _polLogo = new Logo!();

std::cout << "The available languages are:" << std::endl;
orxS32 i = 0; i < orxLocale GetLanguageCounter(); i++

std::cout << " - " << orxLocale GetlLanguage(i) << std::endl;

orxViewport CreateFromConfig("Viewport");

Simplemente registramos un callback para capturar todos los eventos orxEVENT TYPE LOCALE.
Instanciamos entonces nuestro objeto Logo que contiene ambos, logo y leyenda.

También se emiten todos los idiomas disponibles que han sido definidos en los ficheros de
configuracion.

Podemos tener usando la macro orxLOG () para registrar como es usual (en pantalla y en fichero),
pero lo hacemos a la manera de C++ aqui para mostrar cierta diversidad.

Terminamos por crear nuestra vista, como se ha dicho en todos los tutoriales anteriores.

Veamos ahora nuestra callback Exit ().

void StandAlone: :Exit

delete soMyStandAloneGame.m pologo;
soMyStandAloneGame.m polLogo = NULL;

orxLOG("10 StandAlone Exit() called!");

Simple borrado del objeto Logo aqui, nada sorprendente.
Veamos ahora nuestra callback Run().
orxSTATUS StandAlone: :Run

orxSTATUS eResult = orxSTATUS SUCCESS;

Orx Learning - https://orx-project.org/wiki/

Last update:
2025/09/30
17:26 (4
months ago)

es:orx:tutorials:aplicacién_standard https://orx-project.org/wiki/es/orx/tutorials/aplicaci%C3%B3n_standard?rev=1331135261

orxInput IsActive("CyclelLanguage") &&
orxInput HasNewStatus("CycleLanguage"

soMyStandAloneGame.SelectNextLanguage() ;

orxInput IsActive("Quit"

orxLOG("Quit action triggered, exiting!");
eResult = orxSTATUS FAILURE;

eResult;

Se hacen dos cosas aqui.

Primero cuando la entrada CyclelLanguage es activada cambiamos para el siguiente idioma
disponible, entonces cuando Cerrar(Quit) es activado, simplemente retornamos
orxSTATUS FAILURE.

Cuando la callback Run () retorna orxSTATUS FAILURE orx (cuando es usado con el auxiliar
orx_Execute()) cerrara.

Veamos rapidamente al método SeleccionaPréximoIdioma(SelectNextLanguage).
void StandAlone::SelectNextLanguage

s32LanguageIndex = (s32LanguageIndex == orxLocale GetLanguageCounter -
? : s32LanguageIndex + 1;

orxLocale SelectlLanguage(orxLocale GetlLanguage(s32LanguageIndex));

Basicamente vamos al préoximo idioma disponible (regresando al principio de la lista cuando llegamos
al ultimo) y lo seleccionamos con la funciéon orxLocale SelectlLanguage().

Cuando hacemos esto, todos los objetos orxTEXT creados se actualizardn automaticamente si ellos
usan una cadena localizada. Veremos como se hace debajo en la descripcién de la configuracién.
Podemos atrapar la seleccién de cualquier idioma como se hace en nuestra EventHandler callback.

orxSTATUS orxFASTCALL StandAlone::EventHandler(const orxEVENT * pstEvent
_pstEvent->elID
orxLOCALE EVENT SELECT LANGUAGE:
orxLOCALE _EVENT PAYLOAD *pstPayload;
pstPayload = (orxLOCALE EVENT PAYLOAD *) pstEvent->pstPayload;

orxLOG("Switching to '%s'.", pstPayload->zLanguage) ;

1

https://orx-project.org/wiki/ Printed on 2026/02/02 08:20 (0 seconds ago)

2026/02/02 08:20 (0 seconds ago) 7/12 aplicacién_standard

orxSTATUS FAILURE;

Como puedes ver, solo rastreamos el evento orxLOCALE_EVENT SELECT LANGUAGE aqui, asi como
para mostrar que es el nuevo idioma seleccionado.

Hemos terminado ahora con la parte del cédigo de este tutorial. Veamos la configuracion.

Primero que todo, como has podido ver, usamos diferentes carpetas para diferentes arquitecturas.
En otras palabras, el tutorial para Mac OS X esta en la carpeta /mac, la de Linux en /linux, etc...

Por defecto, para un proyecto independiente, orx mirara en la carpeta correspondiente (ej. la carpeta
gue contiene el .exe) para encontrar el fichero de configuraciéon principal.

Como no queremos duplicar el fichero de configuracién en las carpetas de todas las arquitecturas,
creamos uno muy simple con el Unico propdsito de incluir al que contiene toda la informacién y que
es la carpeta padre.

Veamos ahora como hacemos esto mirando en el contenido de 10 _StandAlone.ini de unas de las
subcarpetas (ej. una que es guardada en la misma carpeta que el ejecutable del tutorial).

@../10 StandAlone.ini@

Es todo lo que podemos encontrar ahi. Como puedes ver en los ficheros de plantillas, podemos incluir
otros ficheros de configuracién escribiendo @path/to/FileToInclude@.

Miremos en el fichero de configuracidon quien es guardado en la carpeta padre (ie.
../10_StandAlone.ini).

Definamos nuestra pantalla.

Display
ScreenWidth 800
ScreenHeight 600
Title Stand Alone/Locale Tutorial

Como puedes ver, estamos creando una ventana de resolucion 800x600 y definiendo su titulo.

Necesitamos ahora proveer informacién para nuestras vista y cdmara.

Viewport
Camera Camera
BackgroundColor 20, 10, 10

Camera
Frustumwidth @isplay.ScreenWidth

Orx Learning - https://orx-project.org/wiki/

https://orx-project.org/wiki/es/orx/config/settings_structure/main
https://orx.svn.sourceforge.net/svnroot/orx/trunk/tutorial/bin/10_StandAlone.ini

Last update:
2025/09/30
17:26 (4
months ago)

es:orx:tutorials:aplicacién_standard https://orx-project.org/wiki/es/orx/tutorials/aplicaci%C3%B3n_standard?rev=1331135261

FrustumHeight = @Display.ScreenHeight
FrustumFar 2.0
Position 0.0, 0.0, -1.0

Nada nuevo aqui, ya que todo ya estaba cubierto en el tutorial de vistas.

Veamos que entradas son definidas.

Input
SetList MainInput

MainInput
KEY ESCAPE Quit
KEY SPACE CyclelLanguage

MOUSE LEFT CyclelLanguage

En la seccion Entrada(Input), definimos todos nuestras entradas. En este tutorial solo usamos una
llamada EntradaPrincipal(MainInput) pero podemos definirla como muchas otras que queramos
(por ejemplo, una para el menu principal, una para el juego, etc...).

La MainInput contiene 3 teclas:

e TECLA ESCAPE(KEY ESCAPE) disparara la entrada llamada Quit
e TECLA ESPACIO(KEY SPACE)y RATON IZQUIERDO(MOUSE LEFT) que ambos dispararan la
entrada llamada CyclelLanguage

Podemos afiadir tantas entradas como queramos en esta seccién y atadlas a las teclas, botones del
ratén(incluyendo rueda arriba/abajo), botones del joystick o ejes del joystick.

Veamos como definimos idiomas que serdn usados por el médulo orxLOCALE.

Locale
LanguagelList
English#French#Spanish#German#Finnish#Swedish#Norwegian#Chinese

English
Content This is orx's logo.
Lang = (English)
[French]
Content = Ceci est le logo d'orx.

Lang Francais
LocalizedFont CustomFont

Spanish

Content Este es el logotipo de orx.
Lang Espanol

German

Content Das ist orx Logo.

https://orx-project.org/wiki/ Printed on 2026/02/02 08:20 (0 seconds ago)

https://orx-project.org/wiki/es/orx/tutorials/viewport

2026/02/02 08:20 (0 seconds ago) 9/12 aplicacién_standard

Lang Deutsch
LocalizedFont CustomFont

Finnish
Content Tama on orx logo.
Lang Suomi

Swedish
Content Detta ar orx logotyp.
Lang Svenska

LocalizedFont CustomFont

Norwegian
Content Dette er orx logo.
Lang Norsk

Chinese

Content X0 rx K&

Lang Chinese

LocalizedFont CustomChineseFont

Para definir idiomas para localizacién solo necesitamos definir una seccién Locale y definir una
Listaldiomas(LanguagelList) que contendra todos los idiomas que necesitamos.

Después de esto necesitamos definir una seccion por idioma y para cada tecla necesitada (aqui
Content y Lang) hemos puesto su texto localizado.

De la misma manera, definimos FuenteLocalizada(LocalizedFont) para unidioma o dos, y la
usaremos para especificar una fuente determinada basada en la combinacién texto/idioma.

Como el sistema de localizacion esta basado en una configuracién de orx, podemos usar su capacidad
hereditaria para facilmente afiadir nuevos idiomas a la lista(en otro fichero externo, por ejemplo),
incluso para completar idiomas que han sido parcialmente definidos.

Veamos ahora como definimos nuestro objeto Logo.

LogoGraphic
Texture ../../data/object/orx.png
Pivot center
Logo
Graphic LogoGraphic
FXList FadeIn # LoopFX # ColorCyclel

Smoothing true

De nuevo, todo lo que podemos ver aqui esta cubierto en el tutorial de objeto.
Si eres curioso puedes mirar directamente en 10 _StandAlone.ini para ver que tipos de FXs definimos,
pero no los detallaremos aqui.

Préxima cosa a chequear: nuestro objeto Leyenda(Legend).

Legend
ChildList Legendl # Legend2

Orx Learning - https://orx-project.org/wiki/

https://orx-project.org/wiki/es/orx/tutorials/object
https://orx.svn.sourceforge.net/svnroot/orx/trunk/tutorial/bin/10_StandAlone.ini

Last update:
2025/09/30
17:26 (4
months ago)

es:orx:tutorials:aplicacién_standard https://orx-project.org/wiki/es/orx/tutorials/aplicaci%C3%B3n_standard?rev=1331135261

Sorpresa! Actualmente es un objeto vacio que reproducira dos objetos hijos: Legendl y Legend2.

(L
L

El cddigo-sabio fue creado en un solo objeto llamado Legend pero aparentemente hemos terminado
con mas de un objeto.

El mismo tipo de técnica puede ser usada para generar un sin nUmero grupo de objetos, o un
completo escenario, por ejemplo, sin tener que crearlos uno a uno con cédigo-sabio.

Es posible encadenar objetos con ChildList y Unicamente crear un solo objeto en nuestro cédigo y
tener miles de objetos actuales creados.

Sin embargo, no tenemos punteros directos en ellos, lo que significa que no seremos capaces de
manipularlos directamente.

Siendo esto dicho, para todos los objetos no-interactivos/fondos esto usualmente no es un problema.
Sea consciente de que sus fotogramas (rf. tutorial de fotogramas) se reflejaran en la jerarquia de la
cadena ChildList

Ok, ahora regresemos a nuestros dos objetos, Legendl y Legend2.

Legendl
Graphic LegendlGraphic
Position 0, 0.25, 0.0
FXList ColorCycle2
ParentCamera Camera

Legend?2
Graphic Legend2Graphic
Position 0, 0.3, 0.0
FXList @Legendl
ParentCamera @Legendl

Eso luce muy basico, ellos dos estan usando el mismo FX(ColorCycle2), ambos tienen una posicion
y cada uno tiene su propio Graphic.

PD: Podemos ver que definimos el atributo CamaraPadre(ParentCamera) para ambos. Esto significa
que su actual padre sera la camara y no el objeto Legend finalmente.

Sin embargo Legend sequira siendo su propietario, lo quiere decir que ellos seran automaticamente
borrados cuando Legendd sea eliminado.

Terminemos de echarle un vistazo a sus objetos Graphic.

LegendlText
String $Content
Font $LocalizedFont

Legend2Text
String $Lang

LegendlGraphic
Pivot center
Text LegendlText

https://orx-project.org/wiki/ Printed on 2026/02/02 08:20 (0 seconds ago)

https://orx-project.org/wiki/es/orx/tutorials/frame

2026/02/02 08:20 (0 seconds ago) 11/12 aplicacién_standard

Legend2Graphic
Pivot center
Text Legend2Text

Podemos ver que cada Graphic tiene su propio atributo Text: Legend1Text y Legend2Text.

Ellos ambos tienen diferentes Cadenas(String). El caracter inicial $ indica que no mostramos un
texto crudo pero usamos el contenido como llave para el sistema de localizacién.

Entonces, al final, el objeto Legendl mostrara la cadena localizada con la llave Content, y Legend2
la Unica que tiene la llave Lang.

Todo el tiempo cambiaremos a otro idioma, ambos objetos orxTEXT(ej. Legend1Text y

Legend2Text), tendran su propio contenido automaticamente actualizado en la nueva seleccion del
()

idioma.

Como vimos anteriormente, podemos capturar el evento orxLOCALE EVENT SELECT LANGUAGE

para hacer nuestro propio proceso de adicion, si lo necesitaramos.

Podemos ver también que Legend1Text estd usando una fuente definida en la seccién del idioma
con la llave LocalizedFont. De esta manera las fuentes usadas dependen del correspondiente
idioma. Si no es definido, sera revertido a una forma predeterminada de orx. Esto es muy Util cuando
quieres separar fuentes para idiomas diferentes usando alfabetos diferentes.

En nuestro caso, uno de los idiomas esta definiendo FuenteLocalizada(LocalizedFont) para ser
FuentePersonalizada(CustomFont) y el idioma Chino(Chinese) lo define
FuenteChinaPersonalizada(CustomChineseFont).

Veamos ahora como las fuentes personalizadas son declaradas en orx.

CustomFont
Texture ../../data/object/penguinattack.png
CharacterList OTTUHS%S () ¥+, -

./0123456789: ; <=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]~ “abcdefghijklmnopqrstuvwxy
z{| }~0€0, f o1t "2S<EQZO0" " “" e —"™&>@]2Y i¢Ex¥|§ O2-

® °+23 yq. 105133 ANAAARACEEEEIIIIPNOOO00xBUUU0YPRAGAZEE2CcEE6E11118A06066+aU
aduypy"

CharacterSize 19, 24, 0

CustomChineseFont
Texture ../../data/object/customchinesefont.png
CharacterList = "Orx:&2FrAyix”

CharacterSize 24, 24, 0
CharacterSpacing 2, 2, 0

La primera linea especifica la Texture que contiene nuestra fuente. Nada nuevo hasta ahora.

La segunda linea, sin embargo, es un poco especial. Contiene todos los caracteres definidos en la
textura de nuestra fuente, en orden de aparicion.

Tenga en cuenta que tenemos que duplicar el caracter dentro de un bloque de
configuracién de valor a fin de obtener el verdadero caracter como parte dela
cadena.

Aqui definimos todos los caracteres de ISO Latin 1.

Orx Learning - https://orx-project.org/wiki/

Last update:
2025/09/30
17:26 (4
months ago)

es:orx:tutorials:aplicacién_standard https://orx-project.org/wiki/es/orx/tutorials/aplicaci%C3%B3n_standard?rev=1331135261

Por Ultimo, la propiedad TamafioCaracter(CharacterSize) define el tamafio de un caracter
simple.

La fuente Chinese fue automaticamente generada por una herramienta llamada orxFontGen, usando
una fuente TrueType llamada fireflysung.ttf, y solo contiene los caracteres que necesitamos
para nuestros textos.

Como solo necesitamos muy pocos caracteres aqui. El resultado es una micro-fuente.

orxFontGen define también una propiedad llamada EspaciadoDeCaracter(CharacterSpacing)
que coincide con los espacios vacios en la textura.

Los espacios vacios son Utiles cuando se muestra el texto suavizado para evitar artefactos de
caracteres vecinos que aparezcan en los bordes.

Nota: Como has podido ver, las fuentes comunes necesitan ser monoespaciadas, con todos los
caracteres juntos en forma de malla, sin ninglin espaciado extra.

Recursos

Cadigo fuente: 10_StandAlone.cpp

Fichero de configuracién: 10 StandAlone.ini

1)

ej. sin la ayuda del lanzador orx
2)

que esta implementado en orx.h
3)

en este caso el macro preprocesador
__orxCPP__

sera automaticamente definido
4)

lo pasado como parametro no contiene el nombre del ejecutable que se necesita para determinar el

nombre del fichero de configuracién principal
5)

que usa WinMain() en vez de main ()

From:
https://orx-project.org/wiki/ - Orx Learning

Permanent link: :
https://orx-project.org/wiki/es/orx/tutorials/aplicaci%C3%B3n_standard?rev=1331135261

Last update: 2025/09/30 17:26 (4 months ago) E:\:;

https://orx-project.org/wiki/ Printed on 2026/02/02 08:20 (0 seconds ago)

https://orx-project.org/wiki/es/orx/config/settings_structure/orxtext#orxfontgen
https://orx-project.org/wiki/es/orx/config/settings_structure/orxtext#orxfontgen
https://orx.svn.sourceforge.net/svnroot/orx/trunk/tutorial/src/10_StandAlone/10_StandAlone.cpp
https://orx.svn.sourceforge.net/svnroot/orx/trunk/tutorial/bin/10_StandAlone.ini
https://orx-project.org/wiki/
https://orx-project.org/wiki/es/orx/tutorials/aplicaci%C3%B3n_standard?rev=1331135261

	Tutorial de Ejecutable Independiente
	Sumario
	Detalles
	Recursos

